- Browse by Subject
Browsing by Subject "road edge detection"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item All weather road edge identification based on driving video mining(IEEE, 2017) Wang, Zheyuan; Cheng, Guo; Zheng, Jiang Yu; Computer and Information Science, School of ScienceTo avoid vehicle running off road, road edge detection is a fundamental function. Current work on road edge detection has not exhaustively tackled all weather and illumination conditions. We first sort the visual appearance of roads based on physical and optical properties under various illuminations. Then, data mining approach is applied to a large driving video set that contains the full spectrum of seasons and weathers to learn the statistical distribution of road edge appearances. The obtained parameters of road environment in color on road structure are used to classify weather in video briefly, and the corresponding algorithm and features are applied for robust road edge detection. To visualize the road appearance as well as evaluate the accuracy of detected road, a compact road profile image is generated to reduce the data to a small fraction of video. Through the exhaustive examination of all weather and illuminations, our road detection methods can locate road edges in good weather, reduce errors in dark illuminations, and report road invisibility in poor illuminations.Item Contrast Between Road and Roadside Material For Road Edge Detection In Vehicle Road Departure Mitigation System(National Highway Traffic Safety Administration, 2019) Yi, Qiang; Chien, Stanley; Chen, Yaobin; Sherony, Rini; Electrical and Computer Engineering, School of Engineering and TechnologyVehicle roadway departure crashes results in a large number of fatalities in the U.S. Road departure mitigation (RDM) systems rely on the road edge and road boundary identification. Cameras are widely used in RDMS for identifying road edges. The contrast between road and road boundary objects is one of the key image features used by the camera to detect road edges. This paper analyzes and compares the contrasts between various road surfaces. and road edges.