- Browse by Subject
Browsing by Subject "paper spray mass spectrometry"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Detection of chemical warfare agent simulants and hydrolysis products in biological samples by paper spray mass spectrometry(RSC, 2017-05) McKenna, Josiah; Dhummakupt, Elizabeth S.; Connell, Theresa; Demond, Paul S.; Miller, Dennis B.; Nilles, J. Michael; Manicke, Nicholas E.; Glaros, Trevor; Chemistry and Chemical Biology, School of SciencePaper spray ionization coupled to a high resolution tandem mass spectrometer (a quadrupole orbitrap) was used to identify and quantitate chemical warfare agent (CWA) simulants and their hydrolysis products in blood and urine. Three CWA simulants, dimethyl methylphosphonate (DMMP), trimethyl phosphate (TMP), and diisopropyl methylphosphonate (DIMP), and their isotopically labeled standards were analyzed in human whole blood and urine. Calibration curves were generated and tested with continuing calibration verification standards. Limits of detection for these three compounds were in the low ng mL−1 range for the direct analysis of both blood and urine samples. Five CWA hydrolysis products, ethyl methylphosphonic acid (EMPA), isopropyl methylphosphonic acid (IMPA), isobutyl methylphosphonic acid (iBuMPA), cyclohexyl methylphosphonic acid (CHMPA), and pinacolyl methylphosphonic acid (PinMPA), were also analyzed. Calibration curves were generated in both positive and negative ion modes. Limits of detection in the negative ion mode ranged from 0.36 ng mL−1 to 1.25 ng mL−1 in both blood and urine for the hydrolysis products. These levels were well below those found in victims of the Tokyo subway attack of 2 to 135 ng mL−1. Improved stability and robustness of the paper spray technique in the negative ion mode was achieved by the addition of chlorinated solvents. These applications demonstrate that paper spray mass spectrometry (PS-MS) can be used for rapid, sample preparation-free detection of chemical warfare agents and their hydrolysis products at physiologically relevant concentrations in biological samples.Item Development and validation of a paper spray mass spectrometry method for the rapid quantitation of remdesivir and its active metabolite, GS-441524, in human plasma(Elsevier, 2022-08) Skaggs, Christine; Zimmerman, Hannah; Manicke, Nicholas; Kirkpatrick, Lindsey; Chemistry and Chemical Biology, School of ScienceIntroduction Remdesivir (GS-5734) is a nucleoside analog prodrug with antiviral activity against several single-stranded RNA viruses, including the novel severe respiratory distress syndrome virus 2 (SARS-CoV-2). It is currently the only FDA-approved antiviral agent for the treatment of individuals with COVID-19 caused by SARS-CoV-2. However, remdesivir pharmacokinetics/pharmacodynamics (PK/PD) and toxicity data in humans are extremely limited. It is imperative that precise analytical methods for the quantification of remdesivir and its active metabolite, GS-441524, are developed for use in further studies. We report, herein, the first validated anti-viral paper spray-mass spectrometry (PS-MS/MS) assay for the quantification of remdesivir and GS-441524 in human plasma. We seek to highlight the utility of PS-MS/MS technology and automation advancements for its potential future use in clinical research and the clinical laboratory setting. Methods Calibration curves for remdesivir and GS-441524 were created utilizing seven plasma-based calibrants of varying concentrations and two isotopic internal standards of set concentrations. Four plasma-based quality controls were prepared in a similar fashion to the calibrants and utilized for validation. No sample preparation was needed. Briefly, plasma samples were spotted on a paper substrate contained within pre-manufactured plastic cassette plates, and the spots were dried for 1 h. The samples were then analyzed directly for 1.2 min utilizing PS-MS/MS. All experiments were performed on a Thermo Scientific Altis triple quadrupole mass spectrometer utilizing automated technology. Results The calibration ranges were 20 – 5000 and 100 – 25000 ng/mL for remdesivir and GS-441524, respectively. The calibration curves for the two antiviral agents showed excellent linearity (average R2 = 0.99–1.00). The inter- and intra-day precision (%CV) across validation runs at four QC levels for both analytes was less than 11.2% and accuracy (%bias) was within ± 15%. Plasma calibrant stability was assessed and degradation for the 4 °C and room temperature samples were seen beginning at Day 7. The plasma calibrants were stable at −20 °C. No interference, matrix effects, or carryover was discovered during the validation process. Conclusions PS-MS/MS represents a useful methodology for rapidly quantifying remdesivir and GS-441524, which may be useful for clinical PK/PD, therapeutic drug monitoring (TDM), and toxicity assessment, particularly during the current COVID-19 pandemic and future viral outbreaks.Item Development of a prototype blood fractionation cartridge for plasma analysis by paper spray mass spectrometry(Elsevier, 2016-12) Bills, Brandon J.; Manicke, Nicholas E.; Chemistry and Chemical Biology, School of ScienceDrug monitoring of biofluids is often time consuming and prohibitively expensive. Analysis of dried blood spots offers advantages, such as reduced sample volume, but depends on extensive sample preparation and the presence of a trained lab technician. Paper spray mass spectrometry allows rapid analysis of small molecules from blood spots with minimal sample preparation, however, plasma is often the preferred matrix for bioanalysis. Plasma spots can be analyzed by paper spray MS, but a centrifugation step to isolate the plasma is required. We demonstrate here the development of a paper spray cartridge containing a plasma fractionation membrane to perform automatic on-cartridge plasma fractionation from whole blood samples. Three commercially available blood fractionation membranes were evaluated based on: 1) accuracy of drug concentration determination in plasma, and 2) extent of cell lysis and/or penetration. The accuracy of drug concentration determination was quantitatively determined using high performance liquid chromatography–mass spectrometry (HPLC–MS). While the fractionation membranes were capable of yielding plasma samples with low levels of cell lysis, the membranes did exhibit drug binding to varying degrees, as indicated by a decrease in the drug concentration relative to plasma obtained by centrifugation. Using the membrane exhibiting the lowest binding, we developed a composite paper spray cartridge incorporating the selected fractionation membrane. Quantitative analysis of the plasma samples by paper spray MS yielded results similar to those found with HPLC–MS, but without the need for offline extraction or chromatography.Item Pressure-Sensitive Adhesive Combined with Paper Spray Mass Spectrometry for Low-Cost Collection and Analysis of Drug Residues(American Chemical Society (ACS), 2021-09-28) Nguyen, Chau Bao; Wichert, William R. A.; Carmany, Daniel O.; McBride, Ethan M.; Mach, Phillip M.; Dhummakupt, Elizabeth S.; Glaros, Trevor; Manicke, Nicholas E.; Chemistry and Chemical Biology, School of ScienceIllicit drug use causes over half a million deaths worldwide every year. Drugs of abuse are commonly smuggled through customs and border checkpoints and, increasingly, through parcel delivery services. Improved methods for detection of trace drug residues from surfaces are needed. Such methods should be robust, fieldable, sensitive, and capable of detecting a wide range of drugs. In this work, commercially produced paper with a pressure-sensitive adhesive coating was utilized for the collection and analysis of trace drug residues by paper spray mass spectrometry (MS). This modified substrate was used to combine sample collection of drug residues from surfaces with rapid detection using a single paper spray ticket. The all-in-one ticket was used to probe different surfaces commonly encountered in forensic work including clothing, cardboard, glass, concrete, asphalt, and aluminum. A total of 10 drugs (acetyl fentanyl, fentanyl, clonazolam, cocaine, heroin, ketamine, methamphetamine, methylone, U-47700, and XLR-11) were evaluated and found to be detectable in the picogram range using a benchtop mass spectrometer and in the low nanogram range using a portable ion trap MS. The novel approach demonstrates a simple yet effective sampling strategy, allowing for rapid identification from difficult surfaces via paper spray mass spectrometry.Item A statistical approach to optimizing paper spray mass spectrometry parameters(Wiley, 2020-04) Skaggs, Christine; Kirkpatrick, Lindsey; Wichert, William R. A.; Skaggs, Nicole; Manicke, Nicholas E.; Chemistry and Chemical Biology, School of ScienceRationale Paper spray mass spectrometry (PS‐MS) was used to analyze and quantify ampicillin, a hydrophilic compound and frequently utilized antibiotic. Hydrophilic molecules are difficult to analyze via PS‐MS due to their strong binding affinity to paper substrates and low ionization efficiency, among other reasons. Methods Solvent and paper parameters were optimized to increase the extraction of ampicillin from the paper substrate. After optimizing these key parameters, a Resolution IV 1/16 fractional factorial design with two center points was employed to screen eight different design parameters simultaneously. Results Pore size, sample volume, and solvent volume were the most significant factors affecting average peak area under the curve (AUC) and the signal‐to‐blank (S/B) ratio for the 1 μg/mL ampicillin calibrant. After optimizing the key parameters, a linear calibration curve with a range of 0.2 μg/mL to 100 μg/mL was generated (R2 = 0.98) and the limit of detection (LOD) and lower limit of quantification (LLOQ) were calculated to be 0.07 μg/mL and 0.25 μg/mL, respectively. Conclusions The statistical optimization procedure undertaken here increased the mass spectral signal intensity by more than a factor of 40. This statistical method of screening followed by optimization experiments proved faster and more efficient, and produced more drastic improvements than typical one‐factor‐at‐a‐time experiments.Item Toxicological Drug Screening using Paper Spray High-Resolution Tandem Mass Spectrometry (HR-MS/MS)(Oxford, 2018-06) McKenna, Josiah; Jett, Rachel; Shanks, Kevin; Manicke, Nicholas E.; Chemistry and Chemical Biology, School of ScienceImmunoassays and high-performance liquid chromatography (HPLC) coupled with mass spectrometry (MS) are both widely used methods for drug screening in toxicology. We investigated an alternative approach for rapid drug screening: paper spray MS (PS-MS). In paper spray, the biofluid sample is spotted onto a paper substrate. Upon application of a spray solvent and an electric potential, extraction and ionization occur directly from the paper without any need for additional sample preparation. We developed two paper spray high-resolution MS/MS targeted drug screening assays using a quadrupole-orbitrap mass spectrometer, one the positive ion mode and one in the negative ion mode. In the positive ion mode, over 130 drugs and drug metabolites were semi-quantitatively screened at sub-toxic concentrations in a single 2.5 min analysis. Limits of detection and calibration performances for each target compound are reported. The PS-MS/MS assay was tested on authentic postmortem specimens, and its screening ability and semi-quantitative performance were evaluated against independent LC–MS-MS screening and confirmation assays with good agreement. The paper spray MS/MS showed good qualitative agreement with LC–MS-MS; the true positive rate of paper spray MS/MS was 92%, and the true negative rate was over 98%. The quantitative results between the two methods were also acceptable for a screening application; Passing-Bablok regression yielded a slope of 1.17 and a Pearson’s correlation coefficient of 0.996. A separate PS-MS/MS negative ion screening method was also developed for a small panel of barbiturates and structural analogs, demonstrating its potential for acidic drug detection and screening.