- Browse by Subject
Browsing by Subject "evaporation"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Can ridge-furrow plastic mulching replace irrigation in dryland wheat and maize cropping systems?(Elsevier, 2017-08) Daryanto, Stefani; Wang, Lixin; Jacinthe, Pierre-André; Earth Science, School of ScienceDryland crop production requires significant water investments, but problems associated with irrigation have been observed in many dryland regions (e.g., China, Australia and the Mediterranean basin). A key strategy for maintaining crop yields without over-exploiting the scarce water resource is by increasing water use efficiency (WUE). Plastic mulching technology for wheat and maize has been commonly used in China, but their effect on yield, soil water content, evapotranspiration (ET), and WUE has not been compared with traditional irrigation. Using a meta-analysis approach, we quantitatively examined the efficacy of plastic mulching in comparison with traditional irrigation in the same region. By covering the ridges with plastic and channeling rainwater into a very narrow planting zone (furrow), our results showed that plastic mulching resulted in a yield increase comparable to irrigated crops but used 24% less water in comparison with irrigation due primarily to a much greater WUE and better retention of soil water. The higher WUE in plastic-mulched croplands was likely a result of a greater proportion of available water being used for transpiration (T) than evaporation (E). Currently production costs and residual plastic pollution hinder worldwide adoption of the technique, despite being a promising strategy for dryland cropping systems.Item Global synthesis of vegetation control on evapotranspiration partitioning(2014-10) Wang, Lixin; Good, Stephen P.; Caylor, Kelly K.Evapotranspiration (ET) is an important component of the global hydrological cycle. However, to what extent transpiration ratios (T/ET) are controlled by vegetation and the mechanisms of global-scale T/ET variations are not clear. We synthesized all the published papers that measured at least two of the three components (E, T, and ET) and leaf area index (LAI) simultaneously. Nonlinear relationships between T/ET and LAI were identified for both the overall data set and agricultural or natural data subsets. Large variations in T/ET occurred across all LAI ranges with wider variability at lower LAI. For a given LAI, higher T/ET was observed during later vegetation growing stage within a season. We developed a function relating T/ET to the growing stage relative to the timing of peak LAI. LAI and growing stage collectively explained 43% of the variations in the global T/ET data set, providing a new way to interpret and model global T/ET variability.Item Isotope velocimetry: Experimental and theoretical demonstration of the potential importance of gas flow for isotope fractionation during evaporation of protoplanetary material(Elsevier, 2022-07-01) Young, Edward D.; Macris, Catherine A.; Tang, Haolan; Hogan, Arielle A.; Shollenberger, Quinn R.; Earth and Environmental Sciences, School of ScienceWe use new experiments and a theoretical analysis of the results to show that the isotopic fractionation associated with laser-heating aerodynamic levitation experiments is consistent with the velocity of flowing gas as the primary control on the fractionation. The new Fe and Mg isotope data are well explained where the gas is treated as a low-viscosity fluid that flows around the molten spheres with high Reynolds numbers and minimal drag. A relationship between the ratio of headwind velocity to thermal velocity and saturation is obtained on the basis of this analysis. The recognition that it is the ratio of flow velocity to thermal velocity that controls fractionation allows for extrapolation to other environments in which molten rock encounters gas with appreciable headwinds. In this way, in some circumstances, the degree of isotope fractionation attending evaporation is as much a velocimeter as it is a barometer.Item Thermal regime, energy budget and lake evaporation at Paiku Co, a deep alpine lake in the central Himalayas(EGU, 2019) Lei, Yanbin; Yao, Tandong; Yang, Kun; La, Zhu; Ma, Yaoming; Bird, Broxton W.; Earth Sciences, School of ScienceEvaporation from hydrologically-closed lakes is one of the largest components of their lake water budget, however, its effects on seasonal lake level changes is less investigated due to lack of comprehensive observation of lake water budget. In this study, lake evaporation were determined through energy budget method at Paiku Co, a deep alpine lake in the central Himalayas, based on three years' in-situ observations of thermal structure and hydrometeorology (2015–2018). Results show that Paiku Co was thermally stratified between July and October and fully mixed between November and June. Between April and July when the lake gradually warmed, about 66.5 % of the net radiation was consumed to heat the lake water. Between October and January when the lake cooled, heat released from lake water was about 3 times larger than the net radiation. Changes in lake heat storage largely determined the seasonal pattern of lake evaporation. There was about a 5 month lag between the maximum lake evaporation and maximum net radiation due to the large heat capacity of lake water. Lake evaporation was estimated to be 975 ± 39 mm between May and December during the study period, with low values in spring and early summer, and high values in autumn and early winter. The seasonal pattern of lake evaporation at Paiku Co significantly affects lake level seasonality, that is, significant lake level decrease in post-monsoon season while slight in pre-monsoon. This study may have implications for the different amplitudes of seasonal lake level variations between deep and shallow lakes.Item Thermodynamic Limits of Work and Pressure Gain in Combustion and Evaporation Processes(2002-11) Nalim, M. RaziCombustion and evaporation processes occurring in a closed chamber can result in significant pressure rise and direct work transfer. The pressure and volumetric changes that accompany such processes allow substantial work potential to be achieved in cyclic nonsteady devices, such as internal combustion engines and pulsed combustion or detonation engines. The ideal pressure gain or work production is a function of the prescribed inflow and outflow conditions, volumetric confinement, fluid properties, and other parameters. The generalized thermodynamic limits of pressure gain and work production in such devices are investigated. Analytic and iterative methods are provided to evaluate cyclic combustion and evaporation processes for enhancing airbreathing combustion engine performance.