- Browse by Subject
Browsing by Subject "diseases"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Building a Surface Atlas of Hippocampal Subfields from MRI Scans using FreeSurfer, FIRST and SPHARM(Institute of Electrical and Electronics Engineers, 2014-08) Cong, Shan; Rizkalla, Maher; Du, Eliza Y.; West, John; Risacher, Shannon; Saykin, Andrew J.; Shen, Li; Alzheimer's Disease Neuroimaging Initiative; Department of Medicine, IU School of MedicineThe hippocampus is widely studied with neuroimaging techniques given its importance in learning and memory and its potential as a biomarker for brain disorders such as Alzheimer's disease and epilepsy. However, its complex folding anatomy often presents analytical challenges. In particular, the critical hippocampal subfield information is usually ignored by hippocampal registration in detailed morphometric studies. Such an approach is thus inadequate to accurately characterize hippocampal morphometry and effectively identify hippocampal structural changes related to different conditions. To bridge this gap, we present our initial effort towards building a computational framework for subfield-guided hippocampal morphometry. This initial effort is focused on surface-based morphometry and aims to build a surface atlas of hippocampal subfields. Using the FreeSurfer software package, we obtain valuable hippocampal subfield information. Using the FIRST software package, we extract reliable hippocampal surface information. Using SPHARM, we develop an approach to create an atlas by mapping interpolated subfield information onto an average surface. The empirical result using ADNI data demonstrates the promise and good reproducibility of the proposed method.Item Comparison of Multi-Sample Variant Calling Methods for Whole Genome Sequencing(Institute of Electrical and Electronics Engineers, 2014-10) Nho, Kwangsik; West, John D.; Li, Huian; Henschel, Robert; Bharthur, Apoorva; Tavares, Michel C.; Saykin, Andrew J.; Department of Medicine, IU School of MedicineRapid advancement of next-generation sequencing (NGS) technologies has facilitated the search for genetic susceptibility factors that influence disease risk in the field of human genetics. In particular whole genome sequencing (WGS) has been used to obtain the most comprehensive genetic variation of an individual and perform detailed evaluation of all genetic variation. To this end, sophisticated methods to accurately call high-quality variants and genotypes simultaneously on a cohort of individuals from raw sequence data are required. On chromosome 22 of 818 WGS data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), which is the largest WGS related to a single disease, we compared two multi-sample variant calling methods for the detection of single nucleotide variants (SNVs) and short insertions and deletions (indels) in WGS: (1) reduce the analysis-ready reads (BAM) file to a manageable size by keeping only essential information for variant calling ("REDUCE") and (2) call variants individually on each sample and then perform a joint genotyping analysis of the variant files produced for all samples in a cohort ("JOINT"). JOINT identified 515,210 SNVs and 60,042 indels, while REDUCE identified 358,303 SNVs and 52,855 indels. JOINT identified many more SNVs and indels compared to REDUCE. Both methods had concordance rate of 99.60% for SNVs and 99.06% for indels. For SNVs, evaluation with HumanOmni 2.5M genotyping arrays revealed a concordance rate of 99.68% for JOINT and 99.50% for REDUCE. REDUCE needed more computational time and memory compared to JOINT. Our findings indicate that the multi-sample variant calling method using the JOINT process is a promising strategy for the variant detection, which should facilitate our understanding of the underlying pathogenesis of human diseases.Item Exploring diseases based biomedical document clustering and visualization using self-organizing maps(IEEE, 2017-10) Shah, Setu; Luo, Xiao; Computer and Information Science, School of ScienceDocument clustering is a text mining technique used to provide better document search and browsing in digital libraries or online corpora. In this research, a vector representation of concepts of diseases and similarity measurement between concepts are proposed. They identify the closest concepts of diseases in the context of a corpus. Each document is represented by using the vector space model. A weight scheme is proposed to consider both local content and associations between concepts. Self-Organizing Maps (SOM) are often used as document clustering algorithm. The vector projection and visualization features of SOM enable visualization and analysis of the cluster distribution and relationships on the two dimensional space. The Davies-Bouldin index is used to validate the clusters based on the visualized cluster distributions. The results show that the proposed document clustering framework generates meaningful clusters and can facilitate clustering visualization and information retrieval based on the concepts of diseases.Item Implementing clinical practice guidelines for chronic obstructive pulmonary disease in an EHR system(IEEE, 2017-11) Walker, Marisa; Ge, WeiWei; Gichoya, Judy W.; Purkayastha, Saptarshi; BioHealth Informatics, School of Informatics and ComputingThe use of clinical practice guidelines to improve quality of care has been a vividly discussed topic. Clinical practice guidelines (CPG) aim to improve the health of patients by guiding individual care in clinical settings. CPGs bring potential benefits for patients by improving clinical decision making, improving efficiency and enhancing patient care, while essentially optimizing financial value. Chronic conditions like heart disease, stroke, and chronic obstructive pulmonary disease (COPD), plague the US healthcare system causing several million dollars in healthcare related cost. This paper demonstrates the development of a CPG into an open-source EHR system to effectively manage COPD patients. The CPG is incorporated using the open web app standard, which allows it to be used with any web browser based EHR system, once data from the EHR system can be fed into the app. As a result, the CPG helps create a more effective and efficient decision-making process.