ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "direct metal laser sintering"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Characterization of Microstructure and Mechanical Properties of Direct Metal Laser Sintered 15–5 PH1 Stainless Steel Powders and Components
    (Springer, 2016) Zhang, Jing; Zhang, Yi; Guo, Xingye; Lee, Weng Hoh; Hu, Bin; Lu, Zhe; Jung, Yeon-Gil; Lee, Je-Hyun; Department of Mechanical Engineering, School of Engineering and Technology
    15–5 PH1 stainless steel powder is one of the common materials used for the DMLS process. In this study, both the powder and parts fabricated via DMLS have been characterized. The microstructure and elemental composition have been examined. The microhardness and surface roughness have also been measured. The results show that most powder particle are in spherical with a particle size of 5 ~ 60 μm. Chemical compositions of the powder compare well with the literature data. The thickness of rough surface is about 1 μm. The measured Rockwell hardness is HRC 42.9±0.3, which is also in good agreement with literature.
  • Loading...
    Thumbnail Image
    Item
    Discrete element modeling of powder flow and laser heating in direct metal laser sintering process
    (Elsevier, 2017-06) Lee, Weng-Hoh; Zhang, Yi; Zhang, Jing; Department of Mechanical Engineering, School of Engineering and Technology
    A novel particle-based discrete element model (DEM) is developed to simulate the whole Direct Metal Laser Sintering (DMLS) process, which includes simplified powder deposition, recoating, laser heating, and holding stages. This model is first validated through the simulation of particle flow and heat conduction in the powder bed, and the simulated results are in good agreement with either experiment in the literature or finite element method. Then the validated model is employed to the DMLS process. The effects of laser power, laser scan speed, and hatch spacing on the temperature distributions in the powder bed are investigated. The results demonstrate that the powder bed temperature rises as the laser power is increased. Increasing laser scan speed and laser hatch spacing will not affect the average temperature increase in the powder bed since energy input is kept same. However, a large hatch spacing may cause non-uniform temperature distribution and microstructure inhomogeneity. The model developed in this study can be used as a design and optimization tool for DMLS process.
  • Loading...
    Thumbnail Image
    Item
    Finite Element Simulation and Experimental Validation of Distortion and Cracking Failure Phenomena in Direct Metal Laser Sintering Fabricated Component
    (Elsevier, 2017-08) Zhang, Yi; Zhang, Jing; Department of Mechanical Engineering, School of Engineering and Technology
    A new one-way coupled thermal-mechanical finite element based model of direct metal laser sintering (DMLS) is developed to simulate the process, and predict distortion and cracking failure location in the fabricated components. The model takes into account the layer-by-layer additive manufacturing features, solidification and melting phenomena. The model is first validated using experimental data, then model is applied to a DMLS fabricated component. The study shows how the stress distribution at the support-solid interface is critical to contributing to cracking and distortion. During the DMLS process, thermal stress at the support-solid interface reaches its maximum during the printing process, particularly when the first solid layer is built above the support layer. This result suggests that cracking at the interface may occur during the printing process, which is consistent with experimental observation. Using a design parametric study, a thick and low-density porous layer is found to reduce residual stress and distortion in the built component. The developed finite element model can be used to future design and optimize DMLS process.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University