- Browse by Subject
Browsing by Subject "denture stomatitis"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item The Impact of Nicotine and Cigarette Smoke Condensate on Metabolic Activity and Biofilm Formation of Candida albicans on Acrylic Denture Material(Wiley, 2018) Alzayer, Yasmin Mohammed; Gomez, Grace F.; Eckert, George J.; Levon, John A.; Gregory, Richard L.; Biomedical and Applied Sciences, School of DentistryPurpose Smokers have increased denture stomatitis caused primarily by Candida albicans. The primary aim of this study was to demonstrate the impact of a wide range of nicotine and cigarette smoke condensate (CSC) concentrations on biofilm formation and metabolic activity of C. albicans on acrylic denture material. Materials and Methods C. albicans (ATCC strain 10231) was used. Standardized denture acrylic (PMMA) specimens (total of 135 specimens) were incubated with C. albicans and exposed to nicotine and CSC at different concentrations (0, 0.25, 0.5, 1, 2, 4, 8, 16, and 32 mg/ml) and (0, 0.25, 0.5, 1, 2, and 4 mg/ml), respectively. For each experiment, 3 samples per nicotine and CSC concentration and a total of 45 specimens (27 specimens for the nicotine and 18 specimens for the CSC‐treated samples) were used and were selected randomly for each group. The control group consisted of 0 mg/ml of nicotine or CSC. The viability of C. albicans was measured using spiral plating on blood agar plates. The effect of nicotine and CSC concentrations on planktonic cells was were measured using a microplate reader. Metabolic activity of 24‐hour‐old established C. albicans biofilm exposed to nicotine and CSC for 24 hours in microtiter plates was determined using a 2,3‐bis (2‐methoxy‐4‐nitro‐5‐sulfophenyl)‐2H‐tetrazolium‐carboxanilide (XTT) reduction assay. Results The viability of C. albicans increased concomitant with increasing concentrations of CSC and nicotine, particularly at 0.5 and 2 mg/ml, respectively. Concentrations of CSC and nicotine above this resulted in an inhibitory effect on C. albicans viability. CSC and nicotine at 4 and 16 mg/ml, respectively, increased C. albicans biofilm metabolic activity. Conclusion Nicotine and CSC up to certain concentrations caused increases in biofilm formation, metabolic activity, viability, and planktonic cell absorbance of C. albicans. This in vitro study demonstrates the effectiveness of tobacco on promoting the growth of C. albicans and suggests their potential contributing factor in C. albicans biofilm related infections in smokers.Item In Vitro effects of Plantago major extract, aucubin and baicalein on Candida albicans biofilm formation, metabolic activity and cell surface hydrophobicity(Wiley, 2015) Shirley, Karina Pezo; Windsor, L. Jack; Eckert, George J.; Gregory, Richard L.; Department of Biomedical and Applied Sciences, IU School of DentistryPurpose To determine the in vitro effectiveness of Plantago major extract, along with two of its active components, aucubin and baicalein, on the inhibition of Candida albicans growth, biofilm formation, metabolic activity, and cell surface hydrophobicity. Materials and Methods Twofold dilutions of P. major, aucubin, and baicalein were used to determine the minimum inhibitory concentration (MIC), minimum fungicidal concentration (MFC), and the minimum biofilm inhibitory concentration (MBIC) of each solution. Separately, twofold dilutions of P. major, aucubin, and baicalein were used to determine the metabolic activity of established C. albicans biofilm using a 2,3-bis (2- methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-carboxanilide reduction assay. Twofold dilutions of P. major, aucubin, and baicalein were used to determine the cell surface hydrophobicity of treated C. albicans biofilm by a two-phase assay using hexadecane. The hydrophobicity percentage of the cell surface was then calculated. A mixed-model ANOVA test was used for intergroup comparisons. Results The MICs of P. major extract (diluted 1:2 to 1:8), aucubin (61 to 244 μg/ml), and baicalein (0.0063 to 100 μg/ml) on the total growth of C. albicans were noticeable at their highest concentrations, and the inhibition was dose dependent. The MFC was evaluated after 48 hours of incubation, and aucubin (244 μg/ml) exhibited a strong fungicidal activity at its highest concentration against C. albicans growth. The MBIC indicated no growth or reduced growth of C. albicans biofilm at the highest concentrations of aucubin (61 to 244 μg/ml) and baicalein (25 to 100 μg/ml). Similarly, the effects of these reagents on C. albicans biofilm metabolic activity and hydrophobicity demonstrated high effectiveness at their highest concentrations. Conclusion P. major extract, aucubin, and baicalein caused a dose-dependent reduction on the total growth, biofilm formation, metabolic activity, and cell surface hydrophobicity of C. albicans. This demonstrates their effectiveness as antifungals and suggests their promising potential use as solutions for C. albicans biofilm-related infections.Item Nicotine Upregulates Coaggregation of Candida albicans and Streptococcus mutans(Wiley, 2017) Ashkanane, Ali; Gomez, Grace F.; Levon, John; Windsor, Jack; Eckert, George J.; Gregory, Richard L.; Biomedical and Applied Sciences, School of DentistryPurpose Denture stomatitis is a condition of painless inflammation of denture-bearing mucosa. Reports indicate that nicotine, the major psychoactive ingredient in tobacco, increases growth of Streptococcus mutans and Candida albicans in denture biofilm. The purpose of this study was to determine the in vitro effects of nicotine on coaggregation of C. albicans with S. mutans. Material and Methods C. albicans strain ATCC 10231, S. mutans strain UA159 (ATTC 700610), and nicotine dilutions (ranging from 0 to 32 mg/ml) were used for this study. Both microorganisms were grown for 24 hours in dilutions of nicotine (0 to 32 mg/ml) made in tryptic soy broth (TSB) or TSB supplemented with 1% sucrose (TSBS; S. mutans) or yeast peptone dextrose broth (YPD; C. albicans). Suspensions of the nicotine-treated cells were prepared, mixed together and incubated for up to 24 hours to determine if there was an increase in coaggregation of nicotine-treated cells compared to the no nicotine control cells. Qualitative analysis of coaggregation was performed using a visual aggregation assay and light microscopic observation. A spectrophotometric assay was used to provide a quantitative analysis of the coaggregation. Results The visual aggregation assay indicated a significant increase in coaggregation between C. albicans and S. mutans with increasing incubation time (0 to 24 hours) and nicotine concentrations (0 to 4 mg/ml). Microbial growth in nicotine at 4 mg/ml demonstrated a significant increase in coaggregation after 24 hours of incubation. The numbers of coaggregated S. mutans/C. albicans cells exhibited a significant increase with incubation time and nicotine concentrations when the samples were examined microscopically. More coaggregation of S. mutans and C. albicans was observed with incubation time and increased nicotine compared to the 0 mg/ml nicotine group. There was a noticeable increase of coaggregation when cells were grown in TSBS compared to TSB. Absorbance of nicotine-treated cells (0.25 to 4 mg/ml) exhibited a decrease in values compared to 0 mg/ml at 0 hours of incubation, confirming increased coaggregation. Conclusion These results demonstrated the effect of nicotine in increasing the coaggregation of S. mutans with C. albicans. Coaggregation increased with incubation time and nicotine concentration. Coaggregation was increased with S. mutans grown in TSBS compared to TSB, suggesting that growth in sucrose media leads to an increase in receptors responsible for coaggregation.