- Browse by Subject
Browsing by Subject "crop yield"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Global synthesis of drought effects on cereal production(Office of the Vice Chancellor for Research, 2016-04-08) Daryanto, Stefani; Wang, Lixin; Jacinthe, Pierre-AndréAbstract Drought has been a major cause of agricultural disaster, yet how various factors (e.g., crop species, phenological phases) affect the vulnerability of cereal agriculture to drought remains unclear. Using a data synthesis approach, this study aims to better characterize the effects of these factors and to provide critical information on minimizing yield loss. We collected data from peer-reviewed publications between 1980 and 2015 which examined cereal yield responses to drought using field experiments. We performed unweighted analysis using the log response ratio to calculate the bootstrapped confidence limits of yield responses and calculated drought sensitivities for several key factors. Our results showed that yield reduction varied with species, with wheat having lower sensitivity to drought and yield reduction (20.6%) compared to maize (39.3%) at approximately 60% water reduction. Drought that occurred during the reproductive phase caused greater yield reduction (30%) than when it occurred during the vegetative phase (20%). While cereal cultivation in the drylands was more prone to yield loss than in the non-dryland regions, no difference was observed among sites of different soil texture. Informed by these results, we discuss possible causes and low-cost strategies that may minimize drought effect on crop yield.Item Interactions Between U.S. Vehicle Electrification, Climate Change, and Global Agricultural Markets(Springer, 2023-01) Dumortier, Jerome; Carriquiry, Miguel; Elobeid, Amani; School of Public and Environmental AffairsFuture agricultural production is influenced by climate change and changes in policies and behavior, such as the proliferation of battery electric vehicles (BEV). For the United States (U.S.), the influence of the latter is more pronounced due to the size of the U.S. biofuel industry. Using a global agricultural trade model and different climate change pathways until 2050, we show that global commodity price increases triggered by declining yields due to climate change are dampened by an accelerated increase of U.S. BEV sales, which decrease maize ethanol demand. Accelerated BEV sales also reduce cropland requirements compared to baseline electrification scenarios. The accelerated market share of BEVs also (1) lowers the decrease in caloric intake for maize, rice, and wheat which has important food security implications in the presence of climate change and (2) changes trade relationships. The implications of those findings are that policy discussions surrounding policies to promote BEVs should include lower commodity prices and increased food security that dampen some of the negative effects of climate change. Those are additional benefits besides the direct emissions reduction (assuming low-or no-carbon electricity production) from reducing vehicles with internal combustion engines.