ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "bacterial predators"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Counting Photobleach Steps and the Dynamics of Bacterial Predators
    (Office of the Vice Chancellor for Research, 2016-04-08) Jashnsaz, Hossein; Tsekouras, Konstantinos; Al Juboori, Mohammed; Weistuch, Corey; Miller, Nick; Nguyen, Tyler; McCoy, Bryan; Perkins, Stephanie; Anderson, Gregory; Presse, Steve
    Photobleach (PB) counting is used to enumerate proteins by monitoring how the light intensity in some regions decreases by quanta as individual fluorophores photobleach. While it is straightforward in theory, PB counting is often difficult because fluorescence traces are noisy. In this work, we quantify the sources of noise that arise during photobleach counting to construct a principled likelihood function of observing the data given a model. Noise in the signal could arise from background fluorescence, variable fluorophore emission, and fluorophore blinking. In addition, in a completely different direction, we explore the role of hydrodynamic interactions on the dynamics of bacterial predators. Our study shows that Bdellovibrio (BV) - a model predatory bacterium - is susceptible to self-generated hydrodynamic forces. Near surfaces and defects, these hydrodynamic interactions co-localize BV with its prey, and this may enhance BV’s hunting efficiency.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University