- Browse by Subject
Browsing by Subject "Time-varying correlation"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Assessing uncertainty in dynamic functional connectivity(Elsevier, 2017-04-01) Kudela, Maria; Harezlak, Jaroslaw; Lindquist, Martin A.; Biostatistics, School of Public HealthFunctional connectivity (FC) - the study of the statistical association between time series from anatomically distinct regions (Friston, 1994, 2011) - has become one of the primary areas of research in the field surrounding resting state functional magnetic resonance imaging (rs-fMRI). Although for many years researchers have implicitly assumed that FC was stationary across time in rs-fMRI, it has recently become increasingly clear that this is not the case and the ability to assess dynamic changes in FC is critical for better understanding of the inner workings of the human brain (Hutchison et al., 2013; Chang and Glover, 2010). Currently, the most common strategy for estimating these dynamic changes is to use the sliding-window technique. However, its greatest shortcoming is the inherent variation present in the estimate, even for null data, which is easily confused with true time-varying changes in connectivity (Lindquist et al., 2014). This can have serious consequences as even spurious fluctuations caused by noise can easily be confused with an important signal. For these reasons, assessment of uncertainty in the sliding-window correlation estimates is of critical importance. Here we propose a new approach that combines the multivariate linear process bootstrap (MLPB) method and a sliding-window technique to assess the uncertainty in a dynamic FC estimate by providing its confidence bands. Both numerical results and an application to rs-fMRI study are presented, showing the efficacy of the proposed method.Item Statistical methods for high-dimensional data with complex correlation structure applied to the brain dynamic functional connectivity studyDY(2017-01-06) Kudela, Maria Aleksandra; Harezlak, Jaroslaw; Dzemidzic, Mario; Li, Shanshan; He, Chunyan; Yiannoutsos, ConstantinA popular non-invasive brain activity measurement method is based on the functional magnetic resonance imaging (fMRI). Such data are frequently used to study functional connectivity (FC) defined as statistical association among two or more anatomically distinct fMRI signals (Friston, 1994). FC has emerged in recent years as a valuable tool for providing a deeper understanding of neurodegenerative diseases and neuropsychiatric disorders, such as Alzheimer's disease and autism. Information about complex association structure in high-dimensional fMRI data is often discarded by a calculating an average across complex spatiotemporal processes without providing an uncertainty measure around it. First, we propose a non-parametric approach to estimate the uncertainty of dynamic FC (dFC) estimates. Our method is based on three components: an extension of a boot strapping method for multivariate time series, recently introduced by Jentsch and Politis (2015); sliding window correlation estimation; and kernel smoothing. Second, we propose a two-step approach to analyze and summarize dFC estimates from a task-based fMRI study of social-to-heavy alcohol drinkers during stimulation with avors. In the first step, we apply our method from the first paper to estimate dFC for each region subject combination. In the second step, we use semiparametric additive mixed models to account for complex correlation structure and model dFC on a population level following the study's experimental design. Third, we propose to utilize the estimated dFC to study the system's modularity defined as the mutually exclusive division of brain regions into blocks with intra-connectivity greater than the one obtained by chance. As a result, we obtain brain partition suggesting the existence of common functionally-based brain organization. The main contribution of our work stems from the combination of the methods from the fields of statistics, machine learning and network theory to provide statistical tools for studying brain connectivity from a holistic, multi-disciplinary perspective.