- Browse by Subject
Browsing by Subject "Tick-borne pathogens"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Positive and Negative Regulation of Glycerol Utilization by the c-di-GMP Binding Protein PlzA in Borrelia burgdorferi(American Society for Microbiology, 2018-10-23) Zhang, Jun-Jie; Chen, Tong; Yang, Youyun; Du, Jimei; Li, Hongxia; Troxell, Bryan; He, Ming; Carrasco, Sebastian E.; Gomelsky, Mark; Yang, X. Frank; Microbiology and Immunology, School of MedicineBorrelia burgdorferi, the causative agent of Lyme disease, encounters two disparate host environments during its enzootic life cycle, Ixodes ticks and mammalian hosts. B. burgdorferi has a small genome that encodes a streamlined cyclic dimeric GMP (c-di-GMP) signaling system comprising a single diguanylate cyclase, Rrp1, and two phosphodiesterases. This system is essential for spirochete survival in ticks, in part because it controls the expression of the glp operon involved in glycerol utilization. In this study, we showed that a B. burgdorferi c-di-GMP receptor, PlzA, functions as both a positive and a negative regulator for glp expression. Deletion of plzA or mutation in plzA that impaired c-di-GMP binding abolished glp expression. On the other hand, overexpression of plzA resulted in glp repression, which could be rescued by simultaneous overexpression of rrp1. plzA overexpression in the rrp1 mutant, which is devoid of c-di-GMP, or overexpression of a plzA mutant incapable of c-di-GMP binding further enhanced glp repression. Combined results suggest that c-di-GMP-bound PlzA functions as a positive regulator, whereas ligand-free PlzA acts as a negative regulator for glp expression. Thus, PlzA of B. burgdorferi with a streamlined c-di-GMP signaling system not only controls multiple targets, as previously envisioned, but has also evolved different modes of action.IMPORTANCE The Lyme disease pathogen, Borrelia burgdorferi, has a simple cyclic dimeric GMP (c-di-GMP) signaling system essential for adaptation of the pathogen to the complicated tick environment. The c-di-GMP effector of B. burgdorferi, PlzA, has been shown to regulate multiple cellular processes, including motility, osmolality sensing, and nutrient utilization. The findings of this study demonstrate that PlzA not only controls multiple targets but also has different functional modalities, allowing it to act as both positive and negative regulator of the glp operon expression. This work highlights how bacteria with a small genome can compensate for the limited regulatory repertoire by increasing the complexity of targets and modes of action in their regulatory proteins.Item Prevalence of Bacterial and Protozoan Pathogens in Ticks Collected from Birds in the Republic of Moldova(MDPI, 2022-05-27) Morozov, Alexandr; Tischenkov, Alexei; Silaghi, Cornelia; Proka, Andrei; Toderas, Ion; Movila, Alexandru; Frickmann, Hagen; Poppert, Sven; Biomedical Sciences and Comprehensive Care, School of DentistryEpidemiological knowledge on pathogens in ticks feeding on birds in Moldova is scarce. To reduce this gap of information, a total of 640 migrating and native birds of 40 species were caught from 2012 to 2015 and examined for the presence of ticks in the Republic of Moldova. Altogether, 262 ticks belonging to five tick species (Ixodes ricunus n = 245, Ixodes frontalis n = 12, Haemaphysalis punctata n = 2, Hyalomma marginatum n = 2 (only males), Dermacentor marginatus n = 1) were collected from 93 birds. Of these ticks, 250 (96%) were at the stage of a nymph and 9 at the stage of a larva (3%). One imago of I. frontalis and two imagoes of Hy. marginatum were found. Generally, ticks infested 14.1% of the assessed birds belonging to 12 species. DNA was extracted from individual ticks with subsequent PCR targeting Rickettsia spp., Borrelia spp. in general, as well as relapsing fever-associated Borrelia spp., in particular, Anaplasma phagocytophilum, Neoehrlichia mikurensis, Babesia spp. and Coxiella burnetii. The bird species Turdus merula showed the heaviest infestation with ticks and the highest incidence of infected ticks. Altogether, 32.8% of the assessed ticks (n = 86) were positive for one of the pathogens. DNA of Borrelia spp. was found in 15.2% (40/262) of the investigated ticks; in 7.6% of ticks (20/262), DNA of rickettsiae was detected; 6.9% (18/262) of the ticks were positive for A. phagocytophilum DNA; in 1.5% of the ticks (4/262), DNA of Neoehrlichia mikurensis was detected, followed by 1.5% (4/262) Babesia microti and 1.5% (4/262) Borrelia miyamotoi. Within the B. burgdorferi complex, B. garinii (n = 36) was largely predominant, followed by B. valaisiana (n = 2) and B. lusitaniae (n = 2). Among the detected Rickettsia spp., R. monacensis (n = 16), R. helvetica (n = 2) and R. slovaca (n = 1) were identified. In conclusion, the study provided some new information on the prevalence of ticks on birds in Moldova, as well as the presence of DNA of pathogens in the ticks. By doing so, it provided an additional piece in the puzzle of the global epidemiology of tick-transmitted infectious diseases from a geographic side from where respective surveillance data are scarce.