ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Thiazolidinediones"

Now showing 1 - 6 of 6
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Antidiabetic thiazolidinediones induce ductal differentiation but not apoptosis in pancreatic cancer cells
    (Elsevier, 2005-02-28) Ceni, Elisabetta; Mello, Tommaso; Tarocchi, Mirko; Crabb, David W.; Caldini, Anna; Invernizzi, Pietro; Surrenti, Calogero; Milani, Stefano; Galli, Andrea; Department of Biochemistry and Molecular Biology, IU School of Medicine
    AIM: Thiazolidinediones (TZD) are a new class of oral antidiabetic drugs that have been shown to inhibit growth of same epithelial cancer cells. Although TZD were found to be ligands for peroxisome proliferator-activated receptor gamma (PPARgamma), the mechanism by which TZD exert their anticancer effect is presently unclear. In this study, we analyzed the mechanism by which TZD inhibit growth of human pancreatic carcinoma cell lines in order to evaluate the potential therapeutic use of these drugs in pancreatic adenocarcinoma. METHODS: The effects of TZD in pancreatic cancer cells were assessed in anchorage-independent growth assay. Expression of PPARgamma was measured by reverse-transcription polymerase chain reaction and confirmed by Western blot analysis. PPARgamma activity was evaluated by transient reporter gene assay. Flow cytometry and DNA fragmentation assay were used to determine the effect of TZD on cell cycle progression and apoptosis respectively. The effect of TZD on ductal differentiation markers was performed by Western blot. RESULTS: Exposure to TZD inhibited colony formation in a PPARgamma-dependent manner. Growth inhibition was linked to G1 phase cell cycle arrest through induction of the ductal differentiation program without any increase of the apoptotic rate. CONCLUSION: TZD treatment in pancre
  • Loading...
    Thumbnail Image
    Item
    Comparative risk of severe hypoglycemia among concomitant users of thiazolidinedione antidiabetic agents and antihyperlipidemics
    (Elsevier, 2016-05) Leonard, Charles E.; Han, Xu; Bilker, Warren B.; Flory, James H.; Brensinger, Colleen M.; Flockhart, David A.; Gagne, Joshua J.; Cardillo, Serena; Hennessy, Sean; Department of Medicine, IU School of Medicine
    We conducted high-dimensional propensity score-adjusted cohort studies to examine whether thiazolidinedione use with a statin or fibrate was associated with an increased risk of severe hypoglycemia. We found that concomitant therapy with a thiazolidinedione+fibrate was associated with a generally delayed increased risk of severe hypoglycemia.
  • Loading...
    Thumbnail Image
    Item
    High glucose represses β-klotho expression and impairs fibroblast growth factor 21 action in mouse pancreatic islets: involvement of peroxisome proliferator-activated receptor γ signaling
    (American Diabetes Association, 2013-11) So, Wing Yan; Chen, Lihua; Evans-Molina, Carmella; Xu, Aimin; Lam, Karen S.L.; Leung, Po Sing; Medicine, School of Medicine
    Circulating fibroblast growth factor 21 (FGF21) levels are elevated in diabetic subjects and correlate directly with abnormal glucose metabolism, while pharmacologically administered FGF21 can ameliorate hyperglycemia. The pancreatic islet is an FGF21 target, yet the actions of FGF21 in the islet under normal and diabetic conditions are not fully understood. This study investigated the effects of high glucose on islet FGF21 actions in a diabetic mouse model by investigating db/db mouse islet responses to exogenous FGF21, the direct effects of glucose on FGF21 signaling, and the involvement of peroxisome proliferator-activated receptor γ (PPARγ) in FGF21 pathway activation. Results showed that both adult db/db mouse islets and normal islets treated with high glucose ex vivo displayed reduced β-klotho expression, resistance to FGF21, and decreased PPARγ expression. Rosiglitazone, an antidiabetic PPARγ ligand, ameliorated these effects. Our data indicate that hyperglycemia in type 2 diabetes mellitus may lead to FGF21 resistance in pancreatic islets, probably through reduction of PPARγ expression, which provides a novel mechanism for glucose-mediated islet dysfunction.
  • Loading...
    Thumbnail Image
    Item
    Lack of the serum and glucocorticoid-inducible kinase SGK1 attenuates the volume retention after treatment with the PPARγ agonist pioglitazone
    (2008-05) Artunc, Ferruh; Sandulache, Diana; Nasir, Omaima; Boini, Krishna M.; Friedrich, Björn; Beier, Norbert; Dicks, Edith; Pötzsch, Sven; Klingel, Karin; Amann, Kerstin; Blazer-Yost, Bonnie; Scholz, Wolfgang; Risler, Teut; Kuhl, Dietmar; Lang, Florian
    PPARgamma-agonists enhance insulin sensitivity and improve glucose utilization in diabetic patients. Adverse effects of PPARgamma-agonists include volume retention and edema formation. Recent observations pointed to the ability of PPARgamma agonists to enhance transcription of the serum and glucocorticoid-inducible kinase SGK1, a kinase that is genomically upregulated by mineralocorticoids and stimulates various renal channels and transporters including the renal epithelial Na+ channel ENaC. SGK1 has been proposed to mediate the volume retention after treatment with PPARgamma agonists. To test this hypothesis, food containing the PPARgamma agonist pioglitazone (0.02%, i.e., approximately 25 mg/kg bw/day) was administered to gene-targeted mice lacking SGK1 (sgk1-/-, n=12) and their wild-type littermates (sgk1+/+), n=12). According to in situ hybridization, quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) and immunofluorescence, treatment with pioglitazone significantly increased renal SGK1 mRNA and protein expression in sgk1+/+ mice. The treatment increased body weight significantly in both, sgk1+/+ mice (+2.2+/-0.3 g) and sgk-/- mice (+1.3+/-0.2 g), and decreased hematocrit significantly in sgk1+/+ mice (-6.5+/-1.0%) and sgk1-/- mice (-3.1+/-0.6%). Both effects were significantly (p<0.05) more pronounced in sgk1+/+ mice. According to Evans Blue distribution, pioglitazone increased plasma volume only in sgk1+/+ mice (from 50.9+/-3.9 to 63.7+/-2.5 microl/g bw) but not in sgk-/- mice (from 46.8+/-3.8 to 48.3+/-5.2 microl/g bw). Pioglitazone decreased aldosterone plasma levels and blood pressure and increased leptin plasma levels in both genotypes. We conclude that SGK1 contributes to but does not fully account for the volume retention during treatment with the PPARgamma agonist pioglitazone.
  • Loading...
    Thumbnail Image
    Item
    PPAR-γ/IL-10 axis inhibits MyD88 expression and ameliorates murine polymicrobial sepsis
    (The American Association of Immunologists, 2014-03-01) Ferreira, Ana Elisa; Sisti, Flavia; Sônego, Fabiane; Wang, Suojang; Filgueiras, Luciano; Brandt, Stephanie; Serezani, Ana Paula Moreira; Cunha, Fernando Q.; Alves-Filho, Jose Carlos; Serezani, Carlos Henrique; Department of Microbiology and Immunology, IU School of Medicine
    Polymicrobial sepsis induces organ failure and is accompanied by overwhelming inflammatory response and impairment of microbial killing. Peroxisome proliferator-activated receptor (PPAR)-γ is a nuclear receptor with pleiotropic effects on lipid metabolism, inflammation, and cell proliferation. The insulin-sensitizing drugs thiazolidinediones (TZDs) are specific PPAR-γ agonists. TZDs exert anti-inflammatory actions in different disease models, including polymicrobial sepsis. The TZD pioglitazone, which has been approved by the U.S. Food and Drug Administration, improves sepsis outcome; however, the molecular programs that mediate its effect have not been determined. In a murine model of sepsis, we now show that pioglitazone treatment improves microbial clearance and enhances neutrophil recruitment to the site of infection. We also observed reduced proinflammatory cytokine production and high IL-10 levels in pioglitazone-treated mice. These effects were associated with a decrease in STAT-1-dependent expression of MyD88 in vivo and in vitro. IL-10R blockage abolished PPAR-γ-mediated inhibition of MyD88 expression. These data demonstrate that the primary mechanism by which pioglitazone protects against polymicrobial sepsis is through the impairment of MyD88 responses. This appears to represent a novel regulatory program. In this regard, pioglitazone provides advantages as a therapeutic tool, because it improves different aspects of host defense during sepsis, ultimately enhancing survival.
  • Loading...
    Thumbnail Image
    Item
    Structural Modifications of (Z)-3-(2-aminoethyl)-5-(4-ethoxybenzylidene)thiazolidine-2,4-dione that Improve Selectivity for the Inhibition of Melanoma Cells Containing Active ERK Signaling
    (Royal Society of Chemistry, 2013) Jung, Kwan-Young; Samadani, Ramin; Chauhan, Jay; Nevels, Kerrick; Yap, Jeremy L.; Zhang, Jun; Worlikar, Shilpa; Lanning, Maryanna E.; Chen, Lijia; Ensey, Mary; Shukla, Sagar; Salmo, Rosene; Heinzl, Geoffrey; Gordon, Caryn; Dukes, Troy; MacKerell, Alexander D., Jr.; Shapiro, Paul; Fletcher, Steven; Pharmacology and Toxicology, School of Medicine
    We herein report on the pharmacophore determination of the ERK docking domain inhibitor (Z)-3-(2-aminoethyl)-5-(4-ethoxybenzylidene)thiazolidine-2,4-dione, which has led to the discovery of compounds with greater selectivities for inhibiting the proliferation of melanoma cells containing active ERK signaling.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University