- Browse by Subject
Browsing by Subject "Real-Time"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Design and Implementation of Energy Usage Monitoring and Control Systems Using Modular IIOT Framework(2021-05) Chheta, Monil Vallabhbhai; Chien, Stanley Yung-Ping; Chen, Jie; Li, LingxiThis project aims to develop a cloud-based platform that integrates sensors with business intelligence for real-time energy management at the plant level. It provides facility managers, an energy management platform that allows them to monitor equipment and plant-level energy consumption remotely, receive a warning, identify energy loss due to malfunction, present options with quantifiable effects for decision-making, and take actions, and assess the outcomes. The objectives consist of: 1. Developing a generic platform for the monitoring energy consumption of industrial equipment using sensors 2. Control the connected equipment using an actuator 3. Integrating hardware, cloud, and application algorithms into the platform 4. Validating the system using an Energy Consumption Forecast scenario A Demo station was created for testing the system. The demo station consists of equip- ment such as air compressor, motor and light bulb. The current usage of these equipment is measured using current sensors. Apart from current sensors, temperature sensor, pres- sure sensor and CO2 sensor were also used. Current consumption of these equipment was measured over a couple of days. The control system was tested randomly by turning on equipment at random times. Turning on the equipment resulted in current consumption which ensured that the system is running. Thus, the system worked as expected and user could monitor and control the connected equipment remotely.Item Injector Waveform Monitoring of a Diesel Engine in Real-Time on a Hardware in the Loop Bench(2011-12) Farooqi, Quazi Mohammed Rushaed; Anwar, Sohel; Wasfy, Tamer; Lee, Jaehwan (John)This thesis presents the development, experimentation and validation of a reliable and robust system to monitor the injector pulse generated by an Engine Control Module (ECM) and send the corresponding fueling quantity to the real-time computer in a closed loop Hardware In the Loop (HIL) bench. The system can be easily calibrated for different engine platforms as well. The fueling quantity that is being injected by the injectors is a crucial variable to run closed loop HIL simulation to carry out the performance testing of engine, aftertreatment and other components of the vehicle. This research utilized Field Programmable Gate Arrays (FPGA) and Direct Memory Access (DMA) transfer capability offered by National Instruments (NI) Compact Reconfigurable Input-Output (cRIO) to achieve high speed data acquisition and delivery. The research was conducted in three stages. The first stage was to develop the HIL bench for the research. The second stage was to determine the performance of the system with different threshold methods and different sampling speeds necessary to satisfy the required accuracy of the fueling quantity being monitored. The third stage was to study the error and its variability involved in the injected fueling quantity from pulse to pulse, from injector to injector, between real injector stators and cheaper inductor load cells emulating the injectors, over different operating conditions with full factorial design of experimentation and mixed model Analysis Of Variance (ANOVA). Different thresholds were experimented to find out the best thresholds, the Start of Injection (SOI) threshold and the End of Injection (EOI) threshold that captured the injector “ontime” with best reliability and accuracy. Experimentation has been carried out at various data acquisition rates to find out the optimum speed of data sampling rate, trading off the accuracy of fueling quantity. The experimentation found out the expected error with a system with cheaper solution as well, so that, if a test application is not sensitive to error in fueling quantity, a cheaper solution with lower sampling rate and inductors as load cells can be used. The statistical analysis was carried out at highest available sampling rate on both injectors and inductors with the best threshold method found in previous studies. The result clearly shows the factors that affect the error and the variability in the standard deviations in error; it also shows the relation with the fixed and random factors. The real-time application developed for the HIL bench is capable of monitoring the injector waveform, using any fueling ontime table corresponding to the platform being tested, and delivering the fueling quantity in real-time. The test bench made for this research is also capable of studying injectors of different types with the automated test sequence, without occupying the resource of fully capable closed loop test benches for testing the ECM unctionality.