Design and Implementation of Energy Usage Monitoring and Control Systems Using Modular IIOT Framework

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2021-05
Language
American English
Embargo Lift Date
Department
Committee Members
Degree
M.S.E.C.E.
Degree Year
2021
Department
Electrical & Computer Engineering
Grantor
Purdue University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

This project aims to develop a cloud-based platform that integrates sensors with business intelligence for real-time energy management at the plant level. It provides facility managers, an energy management platform that allows them to monitor equipment and plant-level energy consumption remotely, receive a warning, identify energy loss due to malfunction, present options with quantifiable effects for decision-making, and take actions, and assess the outcomes. The objectives consist of:

  1. Developing a generic platform for the monitoring energy consumption of industrial equipment using sensors
  2. Control the connected equipment using an actuator
  3. Integrating hardware, cloud, and application algorithms into the platform
  4. Validating the system using an Energy Consumption Forecast scenario A Demo station was created for testing the system. The demo station consists of equip- ment such as air compressor, motor and light bulb. The current usage of these equipment is measured using current sensors. Apart from current sensors, temperature sensor, pres- sure sensor and CO2 sensor were also used. Current consumption of these equipment was measured over a couple of days. The control system was tested randomly by turning on equipment at random times. Turning on the equipment resulted in current consumption which ensured that the system is running. Thus, the system worked as expected and user could monitor and control the connected equipment remotely.
Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}