ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Quality of service"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Accelerating complex modeling workflows in CyberWater using on-demand HPC/Cloud resources
    (IEEE, 2021-09) Li, Feng; Chen, Ranran; Fu, Yuankun; Song, Fengguang; Liang, Yao; Ranawaka, Isuru; Pamidighantam, Sudhakar; Luna, Daniel; Liang, Xu; Computer Information and Graphics Technology, School of Engineering and Technology
    Workflow management systems (WMSs) are commonly used to organize/automate sequences of tasks as workflows to accelerate scientific discoveries. During complex workflow modeling, a local interactive workflow environment is desirable, as users usually rely on their rich, local environments for fast prototyping and refinements before they consider using more powerful computing resources. However, existing WMSs do not simultaneously support local interactive workflow environments and HPC resources. In this paper, we present an on-demand access mechanism to remote HPC resources from desktop/laptop-based workflow management software to compose, monitor and analyze scientific workflows in the CyberWater project. Cyber-Water is an open-data and open-modeling software framework for environmental and water communities. In this work, we extend the open-model, open-data design of CyberWater with on-demand HPC accessing capacity. In particular, we design and implement the LaunchAgent library, which can be integrated into the local desktop environment to allow on-demand usage of remote resources for hydrology-related workflows. LaunchAgent manages authentication to remote resources, prepares the computationally-intensive or data-intensive tasks as batch jobs, submits jobs to remote resources, and monitors the quality of services for the users. LaunchAgent interacts seamlessly with other existing components in CyberWater, which is now able to provide advantages of both feature-rich desktop software experience and increased computation power through on-demand HPC/Cloud usage. In our evaluations, we demonstrate how a hydrology workflow that consists of both local and remote tasks can be constructed and show that the added on-demand HPC/Cloud usage helps speeding up hydrology workflows while allowing intuitive workflow configurations and execution using a desktop graphical user interface.
  • Loading...
    Thumbnail Image
    Item
    Energy-Efficient and Robust QoS Control for Wireless Sensor Networks Using the Extended Gur Game
    (MDPI, 2025-01-25) Zhong, Xiaoyang; Liang, Yao; Li, Yimei; Computer Science, Luddy School of Informatics, Computing, and Engineering
    Outdoor wireless sensor networks (WSNs) operate autonomously in dynamic and unattended real-world environments, where sensor nodes are typically powered by their batteries. In hash outdoor settings, such as mountainous regions or underwater locations, recharging or replacing sensor node batteries is particularly challenging. For these WSN deployments, ensuring quality of service (QoS) control while conserving energy is crucial. This paper presents a novel QoS control algorithm for WSNs, built on extensions to the Gur game framework. The proposed approach not only enhances QoS performance compared to existing Gur game-based WSN control algorithms but also addresses their fundamental energy consumption challenges, enabling sustainable communication and extended network lifetimes. We evaluate the approach through comprehensive TinyOS-based WSN simulations and comparisons with existing algorithms. The results demonstrate that our approach, referred to as the robust Gur game, significantly enhances QoS control and achieves a 27.33% improvement in energy efficiency over the original Gur game and shuffle algorithms, showcasing the significant benefits of the proposed method.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University