- Browse by Subject
Browsing by Subject "Purinergic P2X7 receptor"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Radioligands targeting purinergic P2X7 receptor(Elsevier, 2020-06) Zheng, Qi-Huang; Radiology and Imaging Sciences, School of MedicineThe purinergic P2X7 receptor (P2X7R) is an adenosine triphosphate (ATP) ligand-gated cationic channel receptor. P2X7R is closely associated with various inflammatory, immune, cancer, neurological, musculoskeletal and cardiovascular disorders. P2X7R is an interesting therapeutic target as well as molecular imaging target. This brief digest highlights the radioligands targeting P2X7R recently developed in drug discovery and molecular imaging agent development.Item Synthesis and in vitro biological evaluation of new P2X7R radioligands [11C]halo-GSK1482160 analogs(Elsevier, 2019-06) Gao, Mingzhang; Wang, Min; Meyer, Jill A.; Territo, Paul R.; Hutchins, Gary D.; Zarrinmayeh, Hamideh; Zheng, Qi-Huang; Radiology and Imaging Sciences, School of MedicineThe reference standards halo-GSK1482160 (F-, Br-, and I-) and their corresponding precursors desmethyl-halo-GSK1482160 (F-, Br-, and I-) were synthesized from (S)-1-methyl-5-oxopyrrolidine-2-carboxylic acid or (S)-5-oxopyrrolidine-2-carboxylic acid and 2-halo-3-(trifluoromethyl)benzylamine (F-, Br-, and I-) in one step with 45–93% yields. The target tracers [11C]halo-GSK1482160 (F-, Br-, and I-) were prepared from desmethyl-halo-GSK1482160 (F-, Br-, and I-) with [11C]CH3OTf under basic conditions (NaOH-Na2CO3, solid, w/w 1:2) through N-[11C]methylation and isolated by HPLC combined with SPE in 40–50% decay corrected radiochemical yield. The radiochemical purity was >99%, and the molar activity (AM) at end of bombardment (EOB) was 370–740 GBq/μmol. The potency of halo-GSK1482160 (F-, Br-, and I-) in comparison with GSK1482160 (Cl-) was determined by a radioligand competitive binding assay using [11C]GSK1482160, and the binding affinity Ki values for halo-GSK1482160 (F-, Br-, and I-) and GSK1482160 (Cl-) are 54.2, 2.5, 1.9 and 3.1 nM, respectively.