- Browse by Subject
Browsing by Subject "Preclinical models"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item A novel murine model of combined insulin-dependent diabetes and chronic kidney disease has greater skeletal detriments than either disease individually(Elsevier, 2022-12) Damrath, John G.; Metzger, Corinne E.; Allen, Matthew R.; Wallace , Joseph M.; Anatomy, Cell Biology and Physiology, School of MedicineDiabetes and chronic kidney disease (CKD) consistently rank among the top ten conditions in prevalence and mortality in the United States. Insulin-dependent diabetes (IDD) and CKD each increase the risk of skeletal fractures and fracture-related mortality. However, it remains unknown whether these conditions have interactive end-organ effects on the skeleton. We hypothesized that combining IDD and CKD in mice would cause structural and mechanical bone alterations that are more deleterious compared to the single disease states. Female C57BL6/J mice were divided into four groups: 1) N=12 Control (CTRL), 2) N=10 Streptozotocin-induced IDD (STZ), 3) N=10 Adenine diet-induced CKD (AD), and 4) N=9 Combination (STZ+AD). STZ administration resulted in significantly higher blood glucose, HbA1c (p<0.0001), and glucose intolerance (p<0.0001). AD resulted in higher blood urea nitrogen (p=0.0002) while AD, but not STZ+AD mice, had high serum parathyroid hormone (p<0.0001) and phosphorus (p=0.0005). STZ lowered bone turnover (p=0.001). Trabecular bone volume was lowered by STZ (p<0.0001) and increased by AD (p=0.003). Tissue mineral density was lowered by STZ (p<0.0001) and AD (p=0.02) in trabecular bone but only lowered by STZ in cortical bone (p=0.002). Cortical porosity of the proximal tibia was increased by AD, moment of inertia was lower in both disease groups, and most cortical properties were lower in all groups vs CTRL. Ultimate force, stiffness, toughness, and total displacement/strain were lowered by STZ and AD. Fracture toughness was lower by AD (p=0.003). Importantly, Cohen’s D indicated that STZ+AD most strongly lowered bone turnover and mechanical properties. Taken together, structural and material-level bone properties are altered by STZ and AD while their combination resulted in greater detriments, indicating that improving bone health in the combined disease state may require novel interventions.Item Brain metabolic network covariance and aging in a mouse model of Alzheimer's disease(Wiley, 2024) Chumin, Evgeny J.; Burton, Charles P.; Silvola, Rebecca; Miner, Ethan W.; Persohn, Scott C.; Veronese, Mattia; Territo, Paul R.; Medicine, School of MedicineIntroduction: Alzheimer's disease (AD), the leading cause of dementia worldwide, represents a human and financial impact for which few effective drugs exist to treat the disease. Advances in molecular imaging have enabled assessment of cerebral glycolytic metabolism, and network modeling of brain region have linked to alterations in metabolic activity to AD stage. Methods: We performed 18 F-FDG positron emission tomography (PET) imaging in 4-, 6-, and 12-month-old 5XFAD and littermate controls (WT) of both sexes and analyzed region data via brain metabolic covariance analysis. Results: The 5XFAD model mice showed age-related changes in glucose uptake relative to WT mice. Analysis of community structure of covariance networks was different across age and sex, with a disruption of metabolic coupling in the 5XFAD model. Discussion: The current study replicates clinical AD findings and indicates that metabolic network covariance modeling provides a translational tool to assess disease progression in AD models.Item CTF Meeting 2012: Translation of the Basic Understanding of the Biology and Genetics of NF1, NF2, and Schwannomatosis Toward the Development of Effective Therapies(Wiley, 2014) Widemann, Brigitte C.; Acosta, Maria T.; Ammoun, Sylvia; Belzberg, Allan J.; Bernards, Andre; Blakeley, Jaishri; Bretscher, Antony; Cichowski, Karen; Clapp, D. Wade; Dombi, Eva; Evans, Gareth D.; Ferner, Rosalie; Fernandez-Valle, Cristina; Fisher, Michael J.; Giovannini, Marco; Gutmann, David H.; Hanemann, C. Oliver; Hennigan, Robert; Huson, Susan; Ingram, David; Kissil, Joe; Korf, Bruce R.; Legius, Eric; Packer, Roger J.; McClatchey, Andrea I.; McCormick, Frank; North, Kathryn; Pehrsson, Minja; Plotkin, Scott R.; Ramesh, Vijaya; Ratner, Nancy; Schirmer, Susann; Sherman, Larry; Schorry, Elizabeth; Stevenson, David; Stewart, Douglas R.; Ullrich, Nicole; Bakker, Annette C.; Morrison, Helen; Medicine, School of MedicineThe neurofibromatoses (NF) are autosomal dominant genetic disorders that encompass the rare diseases NF1, NF2, and schwannomatosis. The NFs affect more people worldwide than Duchenne muscular dystrophy and Huntington's disease combined. NF1 and NF2 are caused by mutations of known tumor suppressor genes (NF1 and NF2, respectively). For schwannomatosis, although mutations in SMARCB1 were identified in a subpopulation of schwannomatosis patients, additional causative gene mutations are still to be discovered. Individuals with NF1 may demonstrate manifestations in multiple organ systems, including tumors of the nervous system, learning disabilities, and physical disfigurement. NF2 ultimately can cause deafness, cranial nerve deficits, and additional severe morbidities caused by tumors of the nervous system. Unmanageable pain is a key finding in patients with schwannomatosis. Although today there is no marketed treatment for NF-related tumors, a significant number of clinical trials have become available. In addition, significant preclinical efforts have led to a more rational selection of potential drug candidates for NF trials. An important element in fueling this progress is the sharing of knowledge. For over 20 years the Children's Tumor Foundation has convened an annual NF Conference, bringing together NF professionals to share novel findings, ideas, and build collaborations. The 2012 NF Conference held in New Orleans hosted over 350 NF researchers and clinicians. This article provides a synthesis of the highlights presented at the conference and as such, is a "state-of-the-field" for NF research in 2012.Item Species differences in comorbid alcohol use disorder and major depressive disorder: A narrative review(Wiley, 2025) Winkler, Garrett A.; Grahame, Nicholas J.; Psychology, School of ScienceAlcohol use disorder (AUD) and major depressive disorder (MDD) are often comorbid, and it is estimated that between 15 % to 33% of people dependent on alcohol have an MDD diagnosis. Mood‐related symptoms are also common in humans during acute withdrawal, but by most accounts, symptoms abate after 2–4 weeks of alcohol abstinence. Preclinical studies, important for understanding the etiology and finding treatments for this comorbidity, also find depression‐like and anxiety‐like phenotypes in early abstinence along with protracted negative affect detectable past 2 weeks postcessation. In this narrative review, we focus on the translational divergence of AUD and MDD comorbidity with a focus on the time line mismatch between species in concurrent AUD + MDD and MDD following AUD. We also highlight the preclinical success and clinical failure of classic antidepressants for AUD and the relative absence of withdrawal and negative affect in high‐drinking selected lines of mice and rats. We suggest sources of these discrepancies, including discussion of relief/reward‐driven drinking subpopulations and future directions for the field.