- Browse by Subject
Browsing by Subject "Particle Swarm Optimization"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item Applying Different Wide-Area Response-Based Controls to Different Contingencies in Power Systems(2019-08) Iranmanesh, Shahrzad; Steven, Rovnyak; King, Brian; dos Santos, Euzeli CiprianoThe electrical disturbances in the power system have threatened the stability of the system. In the first step, it is necessary to detect these electrical disturbances or events. In the next step, a proper control should apply to the system to decrease the consequences of the disturbances. One-shot control is one of the effective methods for stabilizing the events. In this method, a proper amount of loads are increased or decreased to the electrical system. Determining the amounts of loads, and the location for shedding is crucial. Moreover, some control combinations are more effective for some events and less effective for some others. Therefore, this project is completed in two different sections. First, finding the effective control combinations, second, finding an algorithm for applying different control combinations to different contingencies in real-time. To find effective control combinations, sensitivity analysis is employed to locate the most effective loads in the system. Then to find the control combination commands, gradient descent, and PSO algorithm are used in this project. In the next step, a pattern recognition method is used to apply the appropriate control combination for every event. The decision tree is selected as the pattern recognition method. The three most effective control combinations found by sensitivity analysis and the PSO method are used in the remainder of this study. A decision tree is trained for each of the three control combinations, and their outputs are combined into an algorithm for selecting the best control in real-time. Finally, the algorithm is evaluated using a test set of contingencies. The final results reveal a 30\% improvement in comparison to the previous studies.Item Artificial ants deposit pheromone to search for regulatory DNA elements(BioMed Central, 2006-08-30) Liu, Yunlong; Yokota, Hiroki; Medicine, School of MedicineBackground Identification of transcription-factor binding motifs (DNA sequences) can be formulated as a combinatorial problem, where an efficient algorithm is indispensable to predict the role of multiple binding motifs. An ant algorithm is a biology-inspired computational technique, through which a combinatorial problem is solved by mimicking the behavior of social insects such as ants. We developed a unique version of ant algorithms to select a set of binding motifs by considering a potential contribution of each of all random DNA sequences of 4- to 7-bp in length. Results Human chondrogenesis was used as a model system. The results revealed that the ant algorithm was able to identify biologically known binding motifs in chondrogenesis such as AP-1, NFκB, and sox9. Some of the predicted motifs were identical to those previously derived with the genetic algorithm. Unlike the genetic algorithm, however, the ant algorithm was able to evaluate a contribution of individual binding motifs as a spectrum of distributed information and predict core consensus motifs from a wider DNA pool. Conclusion The ant algorithm offers an efficient, reproducible procedure to predict a role of individual transcription-factor binding motifs using a unique definition of artificial ants.Item Comparing Pso-Based Clustering Over Contextual Vector Embeddings to Modern Topic Modeling(2022-05) Miles, Samuel; Ben Miled, Zina; Salama, Paul; El-Sharkawy, MohamedEfficient topic modeling is needed to support applications that aim at identifying main themes from a collection of documents. In this thesis, a reduced vector embedding representation and particle swarm optimization (PSO) are combined to develop a topic modeling strategy that is able to identify representative themes from a large collection of documents. Documents are encoded using a reduced, contextual vector embedding from a general-purpose pre-trained language model (sBERT). A modified PSO algorithm (pPSO) that tracks particle fitness on a dimension-by-dimension basis is then applied to these embeddings to create clusters of related documents. The proposed methodology is demonstrated on three datasets across different domains. The first dataset consists of posts from the online health forum r/Cancer. The second dataset is a collection of NY Times abstracts and is used to compareItem Dynamic electronic asset allocation comparing genetic algorithm with particle swarm optimization(2018-12) Islam, Md Saiful; Christopher, Lauren A.; King, Brian S.; El-Sharkawy, MohamedThe contribution of this research work can be divided into two main tasks: 1) implementing this Electronic Warfare Asset Allocation Problem (EWAAP) with the Genetic Algorithm (GA); 2) Comparing performance of Genetic Algorithm to Particle Swarm Optimization (PSO) algorithm. This research problem implemented Genetic Algorithm in C++ and used QT Data Visualization for displaying three-dimensional space, pheromone, and Terrain. The Genetic algorithm implementation maintained and preserved the coding style, data structure, and visualization from the PSO implementation. Although the Genetic Algorithm has higher fitness values and better global solutions for 3 or more receivers, it increases the running time. The Genetic Algorithm is around (15-30\%) more accurate for asset counts from 3 to 6 but requires (26-82\%) more computational time. When the allocation problem complexity increases by adding 3D space, pheromones and complex terrains, the accuracy of GA is 3.71\% better but the speed of GA is 121\% slower than PSO. In summary, the Genetic Algorithm gives a better global solution in some cases but the computational time is higher for the Genetic Algorithm with than Particle Swarm Optimization.Item Motion correction of PET/CT images(2017) Chong Chie, Juan Antonio Kim Hoo; Salama, Paul; Territo, PaulThe advances in health care technology help physicians make more accurate diagnoses about the health conditions of their patients. Positron Emission Tomography/Computed Tomography (PET/CT) is one of the many tools currently used to diagnose health and disease in patients. PET/CT explorations are typically used to detect: cancer, heart diseases, disorders in the central nervous system. Since PET/CT studies can take up to 60 minutes or more, it is impossible for patients to remain motionless throughout the scanning process. This movements create motion-related artifacts which alter the quantitative and qualitative results produced by the scanning process. The patient's motion results in image blurring, reduction in the image signal to noise ratio, and reduced image contrast, which could lead to misdiagnoses. In the literature, software and hardware-based techniques have been studied to implement motion correction over medical files. Techniques based on the use of an external motion tracking system are preferred by researchers because they present a better accuracy. This thesis proposes a motion correction system that uses 3D affine registrations using particle swarm optimization and an off-the-shelf Microsoft Kinect camera to eliminate or reduce errors caused by the patient's motion during a medical imaging study.Item Multi-Objective Optimization of Plug-In HEV Powertrain Using Modified Particle Swarm Optimization(2021-05) Parkar, Omkar; Anwar, Sohel; Tovar, Andres; Li, LingxiAn increase in the awareness of environmental conservation is leading the automotive industry into the adaptation of alternatively fueled vehicles. Electric, Fuel-Cell as well as Hybrid-Electric vehicles focus on this research area with the aim to efficiently utilize vehicle powertrain as the first step. Energy and Power Management System control strategies play a vital role in improving the efficiency of any hybrid propulsion system. However, these control strategies are sensitive to the dynamics of the powertrain components used in the given system. A kinematic mathematical model for Plug-in Hybrid Electric Vehicle (PHEV) has been developed in this study and is further optimized by determining optimal power management strategy for minimal fuel consumption as well as NOx emissions while executing a set drive cycle. A multi-objective optimization using weighted sum formulation is needed in order to observe the trade-off between the optimized objectives. Particle Swarm Optimization (PSO) algorithm has been used in this research, to determine the trade-off curve between fuel and NOx. In performing these optimizations, the control signal consisting of engine speed and reference battery SOC trajectory for a 2-hour cycle is used as the controllable decision parameter input directly from the optimizer. Each element of the control signal was split into 50 distinct points representing the full 2 hours, giving slightly less than 2.5 minutes per point, noting that the values used in the model are interpolated between the points for each time step. With the control signal consisting of 2 distinct signals, speed, and SOC trajectory, as 50 element time-variant signals, a multidimensional problem was formulated for the optimizer. Novel approaches to balance the optimizer exploration and convergence, as well as seeding techniques are suggested to solve the optimal control problem. The optimization of each involved individual runs at 5 different weight levels with the resulting cost populations being compiled together to visually represent with the help of Pareto front development. The obtained results of simulations and optimization are presented involving performances of individual components of the PHEV powertrain as well as the optimized PMS strategy to follow for a given drive cycle. Observations of the trade-off are discussed in the case of Multi-Objective Optimizations.Item OPTIMAL ENERGY MANAGEMENT SYSTEM OF PLUG-IN HYBRID ELECTRIC VEHICLE(ProQuest, 2009) Banvait, Harpreetsingh; Anwar, Sohel; Chen, Yaobin; Eberhart, Russell C.Plug-in Hybrid Electric Vehicles (PHEV) are new generation Hybrid Electric Vehicles (HEV) with larger battery capacity compared to Hybrid Electric Vehicles. They can store electrical energy from a domestic power supply and can drive the vehicle alone in Electric Vehicle (EV) mode. According to the U.S. Department of Transportation 80 % of the American driving public on average drives under 50 miles per day. A PHEV vehicle that can drive up to 50 miles by making maximum use of cheaper electrical energy from a domestic supply can significantly reduce the conventional fuel consumption. This may also help in improving the environment as PHEVs emit less harmful gases. However, the Energy Management System (EMS) of PHEVs would have to be very different from existing EMSs of HEVs. In this thesis, three different Energy Management Systems have been designed specifically for PHEVs using simulated study. For most of the EMS development mathematical vehicle models for powersplit drivetrain configuration are built and later on the results are tested on advanced vehicle modeling tools like ADVISOR or PSAT. The main objective of the study is to design EMSs to reduce fuel consumption by the vehicle. These EMSs are compared with existing EMSs which show overall improvement. x In this thesis the final EMS is designed in three intermediate steps. First, a simple rule based EMS was designed to improve the fuel economy for parametric study. Second, an optimized EMS was designed with the main objective to improve fuel economy of the vehicle. Here Particle Swarm Optimization (PSO) technique is used to obtain the optimum parameter values. This EMS has provided optimum parameters which result in optimum blended mode operation of the vehicle. Finally, to obtain optimum charge depletion and charge sustaining mode operation of the vehicle an advanced PSO EMS is designed which provides optimal results for the vehicle to operate in charge depletion and charge sustaining modes. Furthermore, to implement the developed advanced PSO EMS in real-time a possible real time implementation technique is designed using neural networks. This neural network implementation provides sub-optimal results as compared to advanced PSO EMS results but it can be implemented in real time in a vehicle. These EMSs can be used to obtain optimal results for the vehicle driving conditions such that fuel economy is improved. Moreover, the optimal designed EMS can also be implemented in real-time using the neural network procedure described.Item Particle Swarm Optimization in the dynamic electronic warfare battlefield(2017-04-27) Witcher, Paul Ryan; Christopher, LaurenThis research improves the realism of an electronic warfare (EW) environment involving dynamic motion of assets and transmitters. Particle Swarm Optimization (PSO) continues to be used to place assets in such a manner where they can communicate with the largest number of highest priority transmitters. This new research accomplishes improvement in three areas. First, the previously stationary assets and transmitters are given a velocity component, allowing them to change positions over time. Because the assets now have a starting position and velocity, they require time to reach the PSO solution. In order to optimally assign each asset to move in the direction of a PSO solution location, a graph-based method is implemented. This encompasses the second area of research. The graph algorithm runs in O(n^3) time and consumes less than 0.2% of the total measured computation time to find a solution. Transmitter location updates prompt a recalculation of the PSO, causing the assets to change their assignments and trajectories every second. The computation required to ensure accuracy with this behavior is less than 0.5% of the total computation time. The final area of research is the completion of algorithmic performance analysis. A scenario with 3 assets and 30 transmitters only requires an average of 147ms to update all relevant information in a single time interval of one second. Analysis conducted on the data collected in this process indicates that more than 95% of the time providing automatic updates is spent with PSO calculations. Recommendations on minimizing the impact of the PSO are also provided in this research.Item Real-time estimation of state-of-charge using particle swarm optimization on the electro-chemical model of a single cell(2017-05) Chandra Shekar, Arun; Anwar, SohelAccurate estimation of State of Charge (SOC) is crucial. With the ever-increasing usage of batteries, especially in safety critical applications, the requirement of accurate estimation of SOC is paramount. Most current methods of SOC estimation rely on data collected and calibrated offline, which could lead to inaccuracies in SOC estimation as the battery ages or under different operating conditions. This work aims at exploring the real-time estimation and optimization of SOC by applying Particle Swarm Optimization (PSO) to a detailed electrochemical model of a single cell. The goal is to develop a single cell model and PSO algorithm which can run on an embedded device with reasonable utilization of CPU and memory resources and still be able to estimate SOC with acceptable accuracy. The scope is to demonstrate the accurate estimation of SOC for 1C charge and discharge for both healthy and aged cell.