Artificial ants deposit pheromone to search for regulatory DNA elements

If you need an accessible version of this item, please submit a remediation request.
Date
2006-08-30
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
BioMed Central
Abstract

Background Identification of transcription-factor binding motifs (DNA sequences) can be formulated as a combinatorial problem, where an efficient algorithm is indispensable to predict the role of multiple binding motifs. An ant algorithm is a biology-inspired computational technique, through which a combinatorial problem is solved by mimicking the behavior of social insects such as ants. We developed a unique version of ant algorithms to select a set of binding motifs by considering a potential contribution of each of all random DNA sequences of 4- to 7-bp in length.

Results Human chondrogenesis was used as a model system. The results revealed that the ant algorithm was able to identify biologically known binding motifs in chondrogenesis such as AP-1, NFκB, and sox9. Some of the predicted motifs were identical to those previously derived with the genetic algorithm. Unlike the genetic algorithm, however, the ant algorithm was able to evaluate a contribution of individual binding motifs as a spectrum of distributed information and predict core consensus motifs from a wider DNA pool.

Conclusion The ant algorithm offers an efficient, reproducible procedure to predict a role of individual transcription-factor binding motifs using a unique definition of artificial ants.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Liu, Y., Yokota, H. Artificial ants deposit pheromone to search for regulatory DNA elements. BMC Genomics 7, 221 (2006). https://doi.org/10.1186/1471-2164-7-221
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
BMC Genomics
Source
Publisher
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}