- Browse by Subject
Browsing by Subject "Osteoarthritis"
Now showing 1 - 10 of 20
Results Per Page
Sort Options
Item A Reproducible Cartilage Impact Model to Generate Post-Traumatic Osteoarthritis in the Rabbit(MyJove Corporation, 2023-11-21) Dilley, Julian; Noori-Dokht, Hessam; Seetharam, Abhijit; Bello, Margaret; Nanavaty, Aaron; Natoli, Roman M.; McKinley, Todd; Bault, Zachary; Wagner, Diane; Sankar, Uma; Anatomy, Cell Biology and Physiology, School of MedicinePost-traumatic osteoarthritis (PTOA) is responsible for 12% of all osteoarthritis cases in the United States. PTOA can be initiated by a single traumatic event, such as a high-impact load acting on articular cartilage, or by joint instability, as occurs with anterior cruciate ligament rupture. There are no effective therapeutics to prevent PTOA currently. Developing a reliable animal model of PTOA is necessary to better understand the mechanisms by which cartilage damage proceeds and to investigate novel treatment strategies to alleviate or prevent the progression of PTOA. This protocol describes an open, drop tower-based rabbit femoral condyle impact model to induce cartilage damage. This model delivered peak loads of 579.1 ± 71.1 N, and peak stresses of 81.9 ± 10.1 MPa with a time-to-peak load of 2.4 ± 0.5 ms. Articular cartilage from impacted medial femoral condyles (MFCs) had higher rates of apoptotic cells (p = 0.0058) and possessed higher Osteoarthritis Research Society International (OARSI) scores of 3.38 ± 1.43 compared to the non-impacted contralateral MFCs (0.56 ± 0.42), and other cartilage surfaces of the impacted knee (p < 0.0001). No differences in OARSI scores were detected among the non-impacted articular surfaces (p > 0.05).Item Application of quantitative analysis in treatment of osteoporosis and osteoarthritis(2013-11-08) Chen, Andy Bowei; Yokota, Hiroki, 1955-; Na, Sungsoo; Schild, John H.As our population ages, treating bone and joint ailments is becoming increasingly important. Both osteoporosis, a bone disease characterized by a decreased density of mineral in bone, and osteoarthritis, a joint disease characterized by the degeneration of cartilage on the ends of bones, are major causes of decreased movement ability and increased pain. To combat these diseases, many treatments are offered, including drugs and exercise, and much biomedical research is being conducted. However, how can we get the most out of the research we perform and the treatment we do have? One approach is through computational analysis and mathematical modeling. In this thesis, quantitative methods of analysis are applied in different ways to two systems: osteoporosis and osteoarthritis. A mouse model simulating osteoporosis is treated with salubrinal and knee loading. The bone and cell data is used to formulate a system of differential equations to model the response of bone to each treatment. Using Particle Swarm Optimization, optimal treatment regimens are found, including a consideration of budgetary constraints. Additionally, an in vitro model of osteoarthritis in chondrocytes receives RNA silencing of Lrp5. Microarray analysis of gene expression is used to further elucidate the mode of regulation of ADAMTS5, an aggrecanase associated with cartilage degradation, by Lrp5, including the development of a mathematical model. The math model of osteoporosis reveals a quick response to salubrinal and a delayed but substantial response to knee loading. Consideration of cost effectiveness showed that as budgetary constraints increased, treatment did not start until later. The quantitative analysis of ADAMTS5 regulation suggested the involvement of IL1B and p38 MAPK. This research demonstrates the application of quantitative methods to further the usefulness of biomedical and biomolecular research into treatment and signaling pathways. Further work using these techniques can help uncover a bigger picture of osteoarthritis's mode of action and ideal treatment regimens for osteoporosis.Item Augmenting the Health Belief Model to Promote Knee Massage as Self-Management Among Individuals with Knee Osteoarthritis: A Roadmap for Future Research and Intervention Development(2023-08) Nemati, Raheleh; Munk, Niki; Kaushal, Navin; Keith, NiCole; Naugle, KellySelf-administered massage is a form of self-management that has been shown to alleviate symptoms among individuals with knee osteoarthritis. However, existing interventions have yielded inconsistent results in terms of promoting the practice of self-administered massage, highlighting a critical gap in the application of a theoretical or conceptual model. The current study utilized an expanded health belief model that integrates constructs from the theory of planned behavior aimed to identify the behavioral determinants associated with the practice of self-administered knee massage. An observational study was designed to address the objectives using an online survey. A total of 268 participants with knee osteoarthritis completed the survey. Data regarding the clinical characteristics of participants, including the year of diagnosis, chronicity of pain, affected knee(s), and the intensity of pain in terms of current, average, and worst levels, were collected. Structural equation modeling was used to test the predictive validity of the proposed model. The model revealed self-administered massage behavior to be predicted by intention (β = .21, p < .014). Intention was predicted by cues (β = .29, p <.001), task self-efficacy (β = .29, p <.001), affective attitudes (β = .14, p =.011), perceived severity (β = .27, p <.001), and perceived facilitators (β = .22, p <.001), but not response self-efficacy, instrumental attitudes, or barriers. Intention mediated the effects between cues (β = .06, 95% CI .025, .129) and perceived severity (β = .06, 95% CI .014, .127) and behavior. Model determinants were found to mediate between age and behavior (β = -.16, 95% CI -.224, -.093). Interventions aimed at promoting self-administered massage should focus on enhancing individuals' perception of the severity of their knee OA progression and their confidence in performing the massage by teaching them the common massage techniques.Item CAMKK2 is Upregulated in Primary Human Osteoarthritis and its Inhibition Protects Against Chondrocyte Apoptosis(Elsevier, 2023) Dilley, Julian E.; Seetharam, Abhijit; Ding, Xinchun; Bello, Margaret A.; Shutter, Jennifer; Burr, David B.; Natoli, Roman M.; McKinley, Todd O.; Sankar, Uma; Anatomy, Cell Biology and Physiology, School of MedicineObjective: To investigate the role of calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) in human osteoarthritis. Materials and methods: Paired osteochondral plugs and articular chondrocytes were isolated from the relatively healthier (intact) and damaged portions of human femoral heads collected from patients undergoing total hip arthroplasty for primary osteoarthritis (OA). Cartilage from femoral plugs were either flash frozen for gene expression analysis or histology and immunohistochemistry. Chondrocyte apoptosis in the presence or absence of CAMKK2 inhibition was measured using flow cytometry. CAMKK2 overexpression and knockdown in articular chondrocytes were achieved via Lentivirus- and siRNA-mediated approaches respectively, and their effect on pro-apoptotic and cartilage catabolic mechanisms was assessed by immunoblotting. Results: CAMKK2 mRNA and protein levels were elevated in articular chondrocytes from human OA cartilage compared to paired healthier intact samples. This increase was associated with elevated catabolic marker matrix metalloproteinase 13 (MMP-13), and diminished anabolic markers aggrecan (ACAN) and type II collagen (COL2A1) levels. OA chondrocytes displayed enhanced apoptosis, which was suppressed following pharmacological inhibition of CAMKK2. Levels of MMP13, pSTAT3, and the pro-apoptotic marker BAX became elevated when CAMKK2, but not its kinase-defective mutant was overexpressed, whereas knockdown of the kinase decreased the levels of these proteins. Conclusions: CAMKK2 is upregulated in human OA cartilage and is associated with elevated levels of pro-apoptotic and catabolic proteins. Inhibition or knockdown of CAMKK2 led to decreased chondrocyte apoptosis and catabolic protein levels, whereas its overexpression elevated them. CAMKK2 may be a therapeutic target to prevent or mitigate human OA.Item Chondroprotective effects of Salubrinal in a mouse model of osteoarthritis(The British Editorial Society of Bone & Joint Surgery, 2015-05) Hamamura, K.; Nishimura, A.; Iino, T.; Takigawa, S.; Sudo, A.; Yokota, H.; Department of Engineering Technology, School of Engineering and TechnologyOBJECTIVES: Salubrinal is a synthetic agent that elevates phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α) and alleviates stress to the endoplasmic reticulum. Previously, we reported that in chondrocytes, Salubrinal attenuates expression and activity of matrix metalloproteinase 13 (MMP13) through downregulating nuclear factor kappa B (NFκB) signalling. We herein examine whether Salubrinal prevents the degradation of articular cartilage in a mouse model of osteoarthritis (OA). METHODS: OA was surgically induced in the left knee of female mice. Animal groups included age-matched sham control, OA placebo, and OA treated with Salubrinal or Guanabenz. Three weeks after the induction of OA, immunoblotting was performed for NFκB p65 and p-NFκB p65. At three and six weeks, the femora and tibiae were isolated and the sagittal sections were stained with Safranin O. RESULTS: Salubrinal suppressed the progression of OA by downregulating p-NFκB p65 and MMP13. Although Guanabenz elevates the phosphorylation level of eIF2α, it did not suppress the progression of OA. CONCLUSIONS: Administration of Salubrinal has chondroprotective effects in arthritic joints. Salubrinal can be considered as a potential therapeutic agent for alleviating symptoms of OA. Cite this article: Bone Joint Res 2015;4:84-92.Item Comparison of Efficacy of Endogenous and Exogenous IGF-I in Stimulating Matrix Production in Neonatal and Mature Chondrocytes.(SAGE, 2015-10) Aguilar, Izath N.; Trippel, Stephen B.; Shi, Shuiliang; Bonassar, Lawrence J.; Department of Anatomy and Cell Biology, IU School of MedicineObjective: The goal of this study was to compare the efficacy of endogenous upregulation of IGF-I by gene therapy and exogenous addition of insulin-like growth factor I (IGF-I) in enhancing proteoglycan synthesis by skeletally mature and neonatal chondrocytes. Chondrocyte transplantation therapy is a common treatment for focal cartilage lesions, with both mature and neonatal chondrocytes used as a cell source. Additionally, gene therapy strategies to upregulate growth factors such as IGF-I have been proposed to augment chondrocyte transplantation therapies. Methods: Both skeletally mature and neonatal chondrocytes were exposed to either an adeno-associated virus-based plasmid containing the IGF-I gene or exogenous IGF-I. Results: Analysis of IGF-I and glycosaminoglycan production using a 4-parameter dose-response model established a clear connection between the amount of IGF-I produced by cells and their biosynthetic response. Both neonatal and mature chondrocytes showed this relationship, but the sensitivities were quite different, with EC50 of 0.57 ng/mL for neonatal chondrocytes and EC50 of 8.70 ng/mL IGF-I for skeletally mature chondrocytes. Conclusions: These data suggest that IGF-I gene therapy may be more effective with younger cell sources. Both cell types were less sensitive to exogenous IGF-I than endogenous IGF-I.Item Continuous care intervention with carbohydrate restriction improves physical function of the knees among patients with type 2 diabetes: a non-randomized study(Springer, 2022-03-29) Lyman, Kade S.; Athinarayanan, Shaminie J.; McKenzie, Amy L.; Pearson, Camy L.; Adams, Rebecca N.; Hallberg, Sarah J.; McCarter, James P.; Volek, Jeff S.; Phinney, Stephen D.; Andrawis, John P.; Medicine, School of MedicineBackground In a previous study, we assessed a novel, remotely monitored carbohydrate restricted diet regimen including nutritional ketosis in patients with type 2 diabetes and reported significant improvements in weight, glycemic control, abdominal fat and inflammation from baseline to 2 years. Knee outcome measures were collected as a secondary outcome in the trial. This study aims to assess the effect of this intervention on knee functional scores and to identify if changes in weight, central abdominal fat (CAF), glycemic status and high sensitivity C-reactive protein (hsCRP) were associated with its improvement. Methods This prospective analysis included continuous care intervention (CCI, n = 173) and usual care (UC, n = 69) trial participants with type 2 diabetes that reported knee pain at baseline. Knee outcome measures included the Knee injury and Osteoarthritis Outcome Score (KOOS) pain, symptoms, activities of daily living (ADL), sports and recreation function, and knee-related quality of life subscales, and total KOOS score were assessed from baseline to 2 years. Missing data at each time point were replaced with multiple imputation under the assumption of missing at random. To assess if the primary analysis of the knee scores changed under plausible missing not at random assumptions, sensitivity analysis was also performed using pattern mixture models. In CCI, we also assessed factors associated with the improvement of knee scores. Results In the primary analysis, CCI participants demonstrated a statistically significant improvement in total KOOS and all KOOS individual subscale scores at 1 year and maintained through 2 years as opposed to UC patients who showed no significant changes from baseline to 2 years. The significant improvement in total KOOS and its individual subscale scores from baseline to 2 years remained relatively stable in CCI in the sensitivity analysis under different missing not at random scenarios confirming the robustness of the findings from the primary analysis. Approximately 46% of the CCI participants met the 10 points minimal clinically important change at 2 years. A reduction in CAF was associated with improvement in total KOOS and KOOS ADL, while a decrease in hsCRP was associated with improvement in KOOS symptoms scores. Conclusion A very low carbohydrate intervention including nutritional ketosis resulted in significant improvements in knee pain and function among patients with T2D. The improvements in knee function were likely secondary to a reduction in central adiposity and inflammation. Future research on the applicability of this intervention in radiographically confirmed OA patients is important.Item Continuous care intervention with carbohydrate restriction improves physical function of the knees among patients with type 2 diabetes: a non-randomized study(Springer Nature, 2022-03-29) Lyman, Kade S.; Athinarayanan, Shaminie J.; McKenzie, Amy L.; Pearson, Camy L.; Adams, Rebecca N.; Hallberg, Sarah J.; McCarter, James P.; Volek, Jeff S.; Phinney, Stephen D.; Andrawis, John P.; Medicine, School of MedicineBackground: In a previous study, we assessed a novel, remotely monitored carbohydrate restricted diet regimen including nutritional ketosis in patients with type 2 diabetes and reported significant improvements in weight, glycemic control, abdominal fat and inflammation from baseline to 2 years. Knee outcome measures were collected as a secondary outcome in the trial. This study aims to assess the effect of this intervention on knee functional scores and to identify if changes in weight, central abdominal fat (CAF), glycemic status and high sensitivity C-reactive protein (hsCRP) were associated with its improvement. Methods: This prospective analysis included continuous care intervention (CCI, n = 173) and usual care (UC, n = 69) trial participants with type 2 diabetes that reported knee pain at baseline. Knee outcome measures included the Knee injury and Osteoarthritis Outcome Score (KOOS) pain, symptoms, activities of daily living (ADL), sports and recreation function, and knee-related quality of life subscales, and total KOOS score were assessed from baseline to 2 years. Missing data at each time point were replaced with multiple imputation under the assumption of missing at random. To assess if the primary analysis of the knee scores changed under plausible missing not at random assumptions, sensitivity analysis was also performed using pattern mixture models. In CCI, we also assessed factors associated with the improvement of knee scores. Results: In the primary analysis, CCI participants demonstrated a statistically significant improvement in total KOOS and all KOOS individual subscale scores at 1 year and maintained through 2 years as opposed to UC patients who showed no significant changes from baseline to 2 years. The significant improvement in total KOOS and its individual subscale scores from baseline to 2 years remained relatively stable in CCI in the sensitivity analysis under different missing not at random scenarios confirming the robustness of the findings from the primary analysis. Approximately 46% of the CCI participants met the 10 points minimal clinically important change at 2 years. A reduction in CAF was associated with improvement in total KOOS and KOOS ADL, while a decrease in hsCRP was associated with improvement in KOOS symptoms scores. Conclusion: A very low carbohydrate intervention including nutritional ketosis resulted in significant improvements in knee pain and function among patients with T2D. The improvements in knee function were likely secondary to a reduction in central adiposity and inflammation. Future research on the applicability of this intervention in radiographically confirmed OA patients is important.Item Effects of interstitial fluid flow and cell compression in FAK and SRC activities in chondrocytes(2013-11-08) Cho, Eunhye; Na, Sungsoo; Yokota, Hiroki, 1955-; Li, JiliangArticular cartilage is subjected to dynamic mechanical loading during normal daily activities. This complex mechanical loading, including cell deformation and interstitial fluid flow, affects chondrocyte mechano-chemical signaling and subsequent cartilage homeostasis and remodeling. Focal adhesion kinase (FAK) and Src are known to be main mechanotransduction proteins, but little is known about the effect of mechanical loading on FAK and Src under its varying magnitudes and types. In this study, we addressed two questions using C28/I2 chondrocytes subjected to the different types and magnitudes of mechanical loading: Does a magnitude of the mechanical loading affect activities of FAK and Src? Does a type of the mechanical loading also affect their activities? Using fluorescence resonance energy transfer (FRET)-based FAK and Src biosensor in live C28/I2 chondrocytes, we monitored the effects of interstitial fluid flow and combined effects of cell deformation/interstitial fluid flow on FAK and Src activities. The results revealed that both FAK and Src activities in C28/I2 chondrocytes were dependent on the different magnitudes of the applied fluid flow. On the other hand, the type of mechanical loading differently affected FAK and Src activities. Although FAK and Src displayed similar activities in response to interstitial fluid flow only, simultaneous application of cell deformation and interstitial fluid flow induced differential FAK and Src activities possibly due to the additive effects of cell deformation and interstitial fluid flow on Src, but not on FAK. Collectively, the data suggest that the intensities and types of mechanical loading are critical in regulating FAK and Src activities in chondrocytes.Item Enthesopathy, Osteoarthritis, and Mobility in X-linked Hypophosphatemia(Oxford, 2020-07-01) Imel, Erik A.; Pediatrics, School of Medicine