Effects of interstitial fluid flow and cell compression in FAK and SRC activities in chondrocytes

If you need an accessible version of this item, please submit a remediation request.
Date
2013-11-08
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
M.S.
Degree Year
2013
Department
Department of Biomedical Engineering
Grantor
Purdue University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Articular cartilage is subjected to dynamic mechanical loading during normal daily activities. This complex mechanical loading, including cell deformation and interstitial fluid flow, affects chondrocyte mechano-chemical signaling and subsequent cartilage homeostasis and remodeling. Focal adhesion kinase (FAK) and Src are known to be main mechanotransduction proteins, but little is known about the effect of mechanical loading on FAK and Src under its varying magnitudes and types. In this study, we addressed two questions using C28/I2 chondrocytes subjected to the different types and magnitudes of mechanical loading: Does a magnitude of the mechanical loading affect activities of FAK and Src? Does a type of the mechanical loading also affect their activities? Using fluorescence resonance energy transfer (FRET)-based FAK and Src biosensor in live C28/I2 chondrocytes, we monitored the effects of interstitial fluid flow and combined effects of cell deformation/interstitial fluid flow on FAK and Src activities. The results revealed that both FAK and Src activities in C28/I2 chondrocytes were dependent on the different magnitudes of the applied fluid flow. On the other hand, the type of mechanical loading differently affected FAK and Src activities. Although FAK and Src displayed similar activities in response to interstitial fluid flow only, simultaneous application of cell deformation and interstitial fluid flow induced differential FAK and Src activities possibly due to the additive effects of cell deformation and interstitial fluid flow on Src, but not on FAK. Collectively, the data suggest that the intensities and types of mechanical loading are critical in regulating FAK and Src activities in chondrocytes.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}