- Browse by Subject
Browsing by Subject "Ondansetron"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Development of a Generic Physiologically-Based Pharmacokinetic Model for Lactation and Prediction of Maternal and Infant Exposure to Ondansetron via Breast Milk(Wiley, 2022) Job, Kathleen M.; Dallmann, André; Parry, Samuel; Saade, George; Haas, David M.; Hughes, Brenna; Berens, Pamela; Chen, Jia-Yu; Fu, Christina; Humphrey, Kelsey; Hornik, Christoph; Balevic, Stephen; Zimmerman, Kanecia; Watt, Kevin; Obstetrics and Gynecology, School of MedicineOndansetron is commonly used in breastfeeding mothers to treat nausea and vomiting. There is limited information in humans regarding safety of ondansetron exposure to nursing infants and no adequate study looking at ondansetron pharmacokinetics during lactation. We developed a generic physiologically based pharmacokinetic lactation model for small molecule drugs and applied this model to predict ondansetron transfer into breast milk and characterize infant exposure. Drug-specific model inputs were parameterized using data from the literature. Population-specific inputs were derived from a previously conducted systematic literature review of anatomic and physiologic changes in postpartum women. Model predictions were evaluated using ondansetron plasma and breast milk concentration data collected prospectively from 78 women in the Commonly Used Drugs During Lactation and infant Exposure (CUDDLE) study. The final model predicted breast milk and plasma exposures following a single 4 mg dose of intravenous ondansetron in 1000 simulated women who were two days postpartum. Model predictions showed good agreement with observed data. Breast milk median prediction error (MPE) was 18.4% and median absolute prediction error (MAPE) was 53.0%. Plasma MPE was 32.5% and MAPE was 43.2%. The model-predicted daily and relative infant doses were 0.005 mg/kg/day and 3.0%, respectively. This model adequately predicted ondansetron passage into breast milk. The calculated low relative infant dose indicates that mothers receiving ondansetron can safely breastfeed. The model building blocks and population database are open-source and can be adapted to other drugs.Item Inhibition of Small-Conductance, Ca2+-Activated K+ Current by Ondansetron(Frontiers Media, 2021-04-22) Guo, Shuai; Chen, Zhenhui; Chen, Peng-Sheng; Rubart, Michael; Medicine, School of MedicineBackground: Small-conductance Ca2+-activated K+ channels (SK channels) have been proposed as antiarrhythmic targets for the treatment of atrial fibrillation. We previously demonstrated that the 5-HT3 receptor antagonist ondansetron inhibits heterologously expressed, human SK2 (hSK2) currents as well as native cardiac SK currents in a physiological extra-/intracellular [K+] gradient at therapeutic (i.e., sub-micromolar) concentrations. A recent study, using symmetrical [K+] conditions, challenged this result. The goal of the present study was to revisit the inhibitory effect of ondansetron on hSK2-mediated currents in symmetrical [K+] conditions. Experimental Approach: The whole-cell patch clamp technique was used to investigate the effects of ondansetron and apamin on hSK2-mediated currents expressed in HEK 293 cells. Currents were measured in symmetrical [K+] conditions in the presence of 100 nM [Ca2+]o. Results: Expression of hSK2 produced inwardly rectifying whole-cell currents in the presence of 400 nM free cytosolic Ca2+. Ondansetron inhibited whole-cell hSK2 currents with IC 50 values of 154 and 113 nM at -80 and 40 mV, respectively. Macroscopic current inhibited by ondansetron and current inhibited by apamin exhibited inwardly rectifying current-voltage relationships with similar reversal potentials (apamin, ∼5 mV and ondansetron, ∼2 mV). Ondansetron (1 μM) in the continuing presence of apamin (100 nM) had no effect on hSK2-mediated whole-cell currents. Wild-type HEK 293 cells did not express ondansetron- or apamin-sensitive currents. Conclusion: Ondansetron in sub-micromolar concentrations inhibits hSK2 currents even under altered ionic conditions.Item Ondansetron blocks wild-type and p.F503L variant small-conductance Ca2+-activated K+ channels(American Physiological Society, 2018-08-01) Ko, Jum-Suk; Guo, Shuai; Hassel, Jonathan; Celestino-Soper, Patricia; Lynnes, Ty C.; Tisdale, James E.; Zheng, James J.; Taylor, Stanley E.; Foroud, Tatiana; Murray, Michael D.; Kovacs, Richard J.; Li, Xiaochun; Lin, Shien-Fong; Chen, Zhenhui; Vatta, Matteo; Chen, Peng-Sheng; Rubart, Michael; Medicine, School of MedicineApamin-sensitive small-conductance Ca2+-activated K+ (SK) current ( IKAS) is encoded by Ca2+-activated K+ channel subfamily N ( KCNN) genes. IKAS importantly contributes to cardiac repolarization in conditions associated with reduced repolarization reserve. To test the hypothesis that IKAS inhibition contributes to drug-induced long QT syndrome (diLQTS), we screened for KCNN variants among patients with diLQTS, determined the properties of heterologously expressed wild-type (WT) and variant KCNN channels, and determined if the 5-HT3 receptor antagonist ondansetron blocks IKAS. We searched 2,306,335 records in the Indiana Network for Patient Care and found 11 patients with diLQTS who had DNA available in the Indiana Biobank. DNA sequencing discovered a heterozygous KCNN2 variant (p.F503L) in a 52-yr-old woman presenting with corrected QT interval prolongation at baseline (473 ms) and further corrected QT interval lengthening (601 ms) after oral administration of ondansetron. That patient was also heterozygous for the p.S38G and p.P2835S variants of the QT-controlling genes KCNE1 and ankyrin 2, respectively. Patch-clamp experiments revealed that the p.F503L KCNN2 variant heterologously expressed in human embryonic kidney (HEK)-293 cells augmented Ca2+ sensitivity, increasing IKAS density. The fraction of total F503L-KCNN2 protein retained in the membrane was higher than that of WT KCNN2 protein. Ondansetron at nanomolar concentrations inhibited WT and p.F503L SK2 channels expressed in HEK-293 cells as well as native SK channels in ventricular cardiomyocytes. Ondansetron-induced IKAS inhibition was also demonstrated in Langendorff-perfused murine hearts. In conclusion, the heterozygous p.F503L KCNN2 variant increases Ca2+ sensitivity and IKAS density in transfected HEK-293 cells. Ondansetron at therapeutic (i.e., nanomolar) concentrations is a potent IKAS blocker. NEW & NOTEWORTHY We showed that ondansetron, a 5-HT3 receptor antagonist, blocks small-conductance Ca2+-activated K+ (SK) current. Ondansetron may be useful in controlling arrhythmias in which increased SK current is a likely contributor. However, its SK-blocking effects may also facilitate the development of drug-induced long QT syndrome.