- Browse by Subject
Browsing by Subject "Nerve tissue proteins"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item Aberrant GAP43 Gene Expression Is Alzheimer Disease Pathology-Specific(Wiley, 2023) Pyun, Jung-Min; Park, Young Ho; Wang, Jiebiao; Bice, Paula J.; Bennett, David A.; Kim, Sang Yun; Saykin, Andrew J.; Nho, Kwangsik; Radiology and Imaging Sciences, School of MedicineItem Age-dependent formation of TMEM106B amyloid filaments in human brains(Springer Nature, 2022) Schweighauser, Manuel; Arseni, Diana; Bacioglu, Mehtap; Huang, Melissa; Lövestam, Sofia; Shi, Yang; Yang, Yang; Zhang, Wenjuan; Kotecha, Abhay; Garringer, Holly J.; Vidal, Ruben; Hallinan, Grace I.; Newell, Kathy L.; Tarutani, Airi; Murayama, Shigeo; Miyazaki, Masayuki; Saito, Yuko; Yoshida, Mari; Hasegawa, Kazuko; Lashley, Tammaryn; Revesz, Tamas; Kovacs, Gabor G.; van Swieten, John; Takao, Masaki; Hasegawa, Masato; Ghetti, Bernardino; Spillantini, Maria Grazia; Ryskeldi-Falcon, Benjamin; Murzin, Alexey G.; Goedert, Michel; Scheres, Sjors H.W.; Pathology and Laboratory Medicine, School of MedicineMany age-dependent neurodegenerative diseases, such as Alzheimer's and Parkinson's, are characterized by abundant inclusions of amyloid filaments. Filamentous inclusions of the proteins tau, amyloid-β, α-synuclein and transactive response DNA-binding protein (TARDBP; also known as TDP-43) are the most common1,2. Here we used structure determination by cryogenic electron microscopy to show that residues 120-254 of the lysosomal type II transmembrane protein 106B (TMEM106B) also form amyloid filaments in human brains. We determined the structures of TMEM106B filaments from a number of brain regions of 22 individuals with abundant amyloid deposits, including those resulting from sporadic and inherited tauopathies, amyloid-β amyloidoses, synucleinopathies and TDP-43 proteinopathies, as well as from the frontal cortex of 3 individuals with normal neurology and no or only a few amyloid deposits. We observed three TMEM106B folds, with no clear relationships between folds and diseases. TMEM106B filaments correlated with the presence of a 29-kDa sarkosyl-insoluble fragment and globular cytoplasmic inclusions, as detected by an antibody specific to the carboxy-terminal region of TMEM106B. The identification of TMEM106B filaments in the brains of older, but not younger, individuals with normal neurology indicates that they form in an age-dependent manner.Item CHRNA5/A3/B4 Variant rs3743078 and Nicotine-Related Phenotypes: Indirect Effects Through Nicotine Craving(Rutgers Center of Alcohol Studies, 2016-03) Shmulewitz, Dvora; Meyers, Jacquelyn L.; Wall, Melanie M.; Aharonovich, Efrat; Frisch, Amos; Spivak, Baruch; Weizman, Abraham; Edenberg, Howard J.; Gelernter, Joel; Hasin, Deborah S.; Department of Biochemistry & Molecular Biology, IU School of MedicineOBJECTIVE: Nicotine craving is considered an important element in the persistence of cigarette smoking, but little is known about the role of craving in the widely recognized association between variants mapped to the neuronal nicotinic acetylcholine receptor (CHRN) genes on chromosome 15 and nicotine phenotypes. METHOD: The associations between CHRNA5-CHRNA3-CHRNB4 variants and cigarettes per day (CPD), the Fagerström Test for Nicotine Dependence (FTND), and craving were analyzed in data from 662 lifetime smokers from an Israeli adult Jewish household sample. Indirect effects of genotype on nicotine phenotypes through craving were formally tested using regression and bootstrapping procedures. RESULTS: At CHRNA3, allele G of rs3743078 was associated with increased craving, CPD, and FTND scores: Participants with one or two copies of the G allele had, on average, higher scores on the craving scale (p = .0025), more cigarettes smoked (p = .0057), and higher scores on the FTND (p =.0024). With craving in the model, variant rs3743078 showed a significant indirect effect through craving on CPD (p = .0026) and on FTND score (p = .0024). A sizeable proportion of the total rs3743078 effect on CPD (56.4%) and FTND (65.2%) was indirect through craving. CONCLUSIONS: These results suggest that nicotine craving may play a central role in nicotine use disorders and may have utility as a therapeutic target.Item Collapsin Response Mediator Protein 1 (CRMP1) Is Required for High-Frequency Hearing(Elsevier, 2022) Li, Jinan; Liu, Chang; Zhao, Bo; Otolaryngology -- Head and Neck Surgery, School of MedicineCollapsin response mediator protein 1 (CRMP1), also known as dihydropyrimidinase-related protein 1, participates in cytoskeleton remodeling during axonal guidance and neuronal migration. In cochlear hair cells, the assembly and maintenance of the cytoskeleton is of great interest because it is crucial for the morphogenesis and maintenance of hair cells. Previous RNA sequencing analysis found that Crmp1 is highly expressed in cochlear hair cells. However, the expression profile and functions of CRMP1 in the inner ear remain unknown. In this study, the expression and localization of CRMP1 in hair cells was investigated using immunostaining, and was shown to be highly expressed in both outer and inner hair cells. Next, the stereocilia morphology of Crmp1-deficient mice was characterized. Abolishing CRMP1 did not affect the morphogenesis of hair cells. Interestingly, scanning electron microscopy detected hair cell loss at the basal cochlear region, an area responsible for high-frequency auditory perception, in Crmp1-deficient mice. Correspondingly, an auditory brainstem response test showed that mice lacking CRMP1 had progressive hearing loss at high frequencies. In summary, these data suggest that CRMP1 is required for high-frequency auditory perception.Item Doc2b Protects β-Cells Against Inflammatory Damage and Enhances Function(American Diabetes Association, 2018-07) Aslamy, Arianne; Oh, Eunjin; Olson, Erika M.; Zhang, Jing; Ahn, Miwon; Moin, Abu Saleh Md; Tunduguru, Ragadeepthi; Salunkhe, Vishal A.; Veluthakal, Rajakrishnan; Thurmond, Debbie C.; Cellular & Integrative Physiology, IU School of MedicineLoss of functional β-cell mass is an early feature of type 1 diabetes. To release insulin, β-cells require soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes, as well as SNARE complex regulatory proteins like double C2 domain-containing protein β (Doc2b). We hypothesized that Doc2b deficiency or overabundance may confer susceptibility or protection, respectively, to the functional β-cell mass. Indeed, Doc2b+/- knockout mice show an unusually severe response to multiple-low-dose streptozotocin (MLD-STZ), resulting in more apoptotic β-cells and a smaller β-cell mass. In addition, inducible β-cell-specific Doc2b-overexpressing transgenic (βDoc2b-dTg) mice show improved glucose tolerance and resist MLD-STZ-induced disruption of glucose tolerance, fasting hyperglycemia, β-cell apoptosis, and loss of β-cell mass. Mechanistically, Doc2b enrichment enhances glucose-stimulated insulin secretion (GSIS) and SNARE activation and prevents the appearance of apoptotic markers in response to cytokine stress and thapsigargin. Furthermore, expression of a peptide containing the Doc2b tandem C2A and C2B domains is sufficient to confer the beneficial effects of Doc2b enrichment on GSIS, SNARE activation, and apoptosis. These studies demonstrate that Doc2b enrichment in the β-cell protects against diabetogenic and proapoptotic stress. Furthermore, they identify a Doc2b peptide that confers the beneficial effects of Doc2b and may be a therapeutic candidate for protecting functional β-cell mass.Item Early-onset Dementia with Lewy Bodies(Wiley, 2004-04) Takao, Masaki; Ghetti, Bernardino; Yoshida, Hirotaka; Piccardo, Pedro; Narain, Yolanda; Murrell, Jill R.; Vidal, Ruben; Glazier, Bradley S.; Jakes, Ross; Tsutsui, Miho; Grazia Spillantini, Maria; Crowther, R. Anthony; Goedert, Michel; Koto, Atsuo; Pathology and Laboratory Medicine, School of MedicineThe clinical and neuropathological characteristics of an atypical form of dementia with Lewy bodies (DLB) are described. The proband experienced difficulties in her school performance at 13 years of age. Neurological examination revealed cognitive dysfunction, dysarthria, parkinsonism and myoclonus. By age 14 years, the symptoms had worsened markedly and the proband died at age 15 years. On neuropathological examination, the brain was severely atrophic. Numerous intracytoplasmic and intraneuritic Lewy bodies, as well as Lewy neurites, were present throughout the cerebral cortex and subcortical nuclel; vacuolar changes were seen in the upper layers of the neocortex and severe neuronal loss and gliosis were evident in the cerebral cortex and substantia nigra. Lewy bodies and Lewy neurites were strongly immunoreactive for alpha-synuclein and ubiquitin. Lewy bodies were composed of filamentous and granular material and isolated filaments were decorated by alpha-synuclein antibodies. Immunohistochemistry for tau or beta-amyloid yielded negative results. The etiology of this atypical form of DLB is unknown, since there was no family history and since sequencing of the exonic regions of alpha-Synuclein, beta-Synuclein, Synphilin-1, Parkin, Ubiquitin C-terminal hydrolase L1 and Neurofilament-M failed to reveal a pathogenic mutation. This study provides further evidence of the clinical and pathological heterogeneity of DLB.Item Involvement of Collapsin Response Mediator Protein 2 in Posttraumatic Sprouting in Acquired Epilepsy(2014) Wilson, Sarah Marie; Oxford, Gerry S.; Khanna, Rajesh; Jen, Joanna; Xu, Zao C.; Jin, Xiao-MingPosttraumatic epilepsy, the development of temporal lobe epilepsy (TLE) following traumatic brain injury, accounts for 20% of symptomatic epilepsy. Reorganization of mossy fibers within the hippocampus is a common pathological finding of TLE. Normal mossy fibers project into the CA3 region of the hippocampus where they form synapses with pyramidal cells. During TLE, mossy fibers are observed to innervate the inner molecular layer where they synapse onto the dendrites of other dentate granule cells, leading to the formation of recurrent excitatory circuits. To date, the molecular mechanisms contributing to mossy fiber sprouting are relatively unknown. Recent focus has centered on the involvement of tropomycin-related kinase receptor B (TrkB), which culminates in glycogen synthase kinase 3β (GSK3β) inactivation. As the neurite outgrowth promoting collapsin response mediator protein 2 (CRMP2) is rendered inactive by GSK3β phosphorylation, events leading to inactivation of GSK3β should therefore increase CRMP2 activity. To determine the involvement of CRMP2 in mossy fiber sprouting, I developed a novel tool ((S)-LCM) for selectively targeting the ability of CRMP2 to enhance tubulin polymerization. Using (S)-LCM, it was demonstrated that increased neurite outgrowth following GSK3β inactivation is CRMP2 dependent. Importantly, TBI led to a decrease in GSK3β-phosphorylated CRMP2 within 24 hours which was secondary to the inactivation of GSK3β. The loss of GSK3β-phosphorylated CRMP2 was maintained even at 4 weeks post-injury, despite the transience of GSK3β-inactivation. Based on previous work, it was hypothesized that activity-dependent mechanisms may be responsible for the sustained loss of CRMP2 phosphorylation. Activity-dependent regulation of GSK3β-phosphorylated CRMP2 levels was observed that was attributed to a loss of priming by cyclin dependent kinase 5 (CDK5), which is required for subsequent phosphorylation by GSK3β. It was confirmed that the loss of GSK3β-phosphorylated CRMP2 at 4 weeks post-injury was likely due to decreased phosphorylation by CDK5. As TBI resulted in a sustained increase in CRMP2 activity, I attempted to prevent mossy fiber sprouting by targeting CRMP2 in vivo following TBI. While (S)-LCM treatment dramatically reduced mossy fiber sprouting following TBI, it did not differ significantly from vehicle-treated animals. Therefore, the necessity of CRMP2 in mossy fiber sprouting following TBI remains unknown.Item miR‐133b as a potential regulator of a synaptic NPTX2 protein in Alzheimer's disease(Wiley, 2024) Han, Sang-Won; Park, Young Ho; Bice, Paula J.; Bennett, David A.; Kim, SangYun; Saykin, Andrew J.; Nho, Kwangsik; Radiology and Imaging Sciences, School of MedicineA synaptic protein, Neuronal Pentraxin 2 (NPTX2), has emerged as a pivotal biomarker for Alzheimer's dementia (AD). We identified candidate miRNAs targeting NPTX2 and performed association and mediation analyses using multi-omics data (N = 702). Among 44 candidate miRNAs, miR-133b was significantly associated with AD and Braak positivity. Higher miR-133b expression was also associated with higher NPTX2 gene expression and better cognition. Mediation analysis showed that miR-133b partially influences AD and cognition through the NPTX2 protein. Our integrated approach suggests a potential role of miR-133b in synaptic integrity and offers new insights into AD pathogenesis.Item Uncovering the genetic architecture of broad antisocial behavior through a genome-wide association study meta-analysis(Springer Nature, 2022) Tielbeek, Jorim J.; Uffelmann, Emil; Williams, Benjamin S.; Colodro-Conde, Lucía; Gagnon, Éloi; Mallard, Travis T.; Levitt, Brandt E.; Jansen, Philip R.; Johansson, Ada; Sallis, Hannah M.; Pistis, Giorgio; Saunders, Gretchen R. B.; Allegrini, Andrea G.; Rimfeld, Kaili; Konte, Bettina; Klein, Marieke; Hartmann, Annette M.; Salvatore, Jessica E.; Nolte, Ilja M.; Demontis, Ditte; Malmberg, Anni L. K.; Burt, S. Alexandra; Savage, Jeanne E.; Sugden, Karen; Poulton, Richie; Mullan Harris, Kathleen; Vrieze, Scott; McGue, Matt; Iacono, William G.; Roth Mota, Nina; Mill, Jonathan; Viana, Joana F.; Mitchell, Brittany L.; Morosoli, Jose J.; Andlauer, Till F. M.; Ouellet-Morin, Isabelle; Tremblay, Richard E.; Côté, Sylvana M.; Gouin, Jean-Philippe; Brendgen, Mara R.; Dionne, Ginette; Vitaro, Frank; Lupton, Michelle K.; Martin, Nicholas G.; COGA Consortium; Spit for Science Working Group; Castelao, Enrique; Räikkönen, Katri; Eriksson, Johan G.; Lahti, Jari; Hartman, Catharina A.; Oldehinkel, Albertine J.; Snieder, Harold; Liu, Hexuan; Preisig, Martin; Whipp, Alyce; Vuoksimaa, Eero; Lu, Yi; Jern, Patrick; Rujescu, Dan; Giegling, Ina; Palviainen, Teemu; Kaprio, Jaakko; Harden, Kathryn Paige; Munafò, Marcus R.; Morneau-Vaillancourt, Geneviève; Plomin, Robert; Viding, Essi; Boutwell, Brian B.; Aliev, Fazil; Dick, Danielle M.; Popma, Arne; Faraone, Stephen V.; Børglum, Anders D.; Medland, Sarah E.; Franke, Barbara; Boivin, Michel; Pingault, Jean-Baptiste; Glennon, Jeffrey C.; Barnes, J. C.; Fisher, Simon E.; Moffitt, Terrie E.; Caspi, Avshalom; Polderman, Tinca J. C.; Posthuma, Danielle; Medical and Molecular Genetics, School of MedicineDespite the substantial heritability of antisocial behavior (ASB), specific genetic variants robustly associated with the trait have not been identified. The present study by the Broad Antisocial Behavior Consortium (BroadABC) meta-analyzed data from 28 discovery samples (N = 85,359) and five independent replication samples (N = 8058) with genotypic data and broad measures of ASB. We identified the first significant genetic associations with broad ASB, involving common intronic variants in the forkhead box protein P2 (FOXP2) gene (lead SNP rs12536335, p = 6.32 × 10-10). Furthermore, we observed intronic variation in Foxp2 and one of its targets (Cntnap2) distinguishing a mouse model of pathological aggression (BALB/cJ strain) from controls (BALB/cByJ strain). Polygenic risk score (PRS) analyses in independent samples revealed that the genetic risk for ASB was associated with several antisocial outcomes across the lifespan, including diagnosis of conduct disorder, official criminal convictions, and trajectories of antisocial development. We found substantial genetic correlations of ASB with mental health (depression rg = 0.63, insomnia rg = 0.47), physical health (overweight rg = 0.19, waist-to-hip ratio rg = 0.32), smoking (rg = 0.54), cognitive ability (intelligence rg = -0.40), educational attainment (years of schooling rg = -0.46) and reproductive traits (age at first birth rg = -0.58, father's age at death rg = -0.54). Our findings provide a starting point toward identifying critical biosocial risk mechanisms for the development of ASB.