- Browse by Subject
Browsing by Subject "Nanopore"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Benchmarking of de novo assembly algorithms for Nanopore data reveals optimal performance of OLC approaches(Biomed Central, 2016) Cherukuri, Yesesri; Janga, Sarath Chandra; Department of Biohealth Informatics, School of Informatics and ComputingImproved DNA sequencing methods have transformed the field of genomics over the last decade. This has become possible due to the development of inexpensive short read sequencing technologies which have now resulted in three generations of sequencing platforms. More recently, a new fourth generation of Nanopore based single molecule sequencing technology, was developed based on MinION® sequencer which is portable, inexpensive and fast. It is capable of generating reads of length greater than 100 kb. Though it has many specific advantages, the two major limitations of the MinION reads are high error rates and the need for the development of downstream pipelines. The algorithms for error correction have already emerged, while development of pipelines is still at nascent stage.Item New Twists in Detecting mRNA Modification Dynamics(Elsevier, 2020-07-01) Anreiter, Ina; Mir, Quoseena; Simpson, Jared T.; Janga, Sarath C.; Soller, Matthias; BioHealth Informatics, School of Informatics and ComputingModified nucleotides in mRNA are an essential addition to the standard genetic code of four nucleotides in animals, plants, and their viruses. The emerging field of epitranscriptomics examines nucleotide modifications in mRNA and their impact on gene expression. The low abundance of nucleotide modifications and technical limitations, however, have hampered systematic analysis of their occurrence and functions. Selective chemical and immunological identification of modified nucleotides has revealed global candidate topology maps for many modifications in mRNA, but further technical advances to increase confidence will be necessary. Single-molecule sequencing introduced by Oxford Nanopore now promises to overcome such limitations, and we summarize current progress with a particular focus on the bioinformatic challenges of this novel sequencing technology.Item New Twists in Detecting mRNA Modification Dynamics(Elsevier, 2020-07-01) Anreiter, Ina; Mir, Quoseena; Simpson, Jared T.; Janga, Sarath C.; Soller, Matthias; Medical and Molecular Genetics, School of MedicineModified nucleotides in mRNA are an essential addition to the standard genetic code of four nucleotides in animals, plants, and their viruses. The emerging field of epitranscriptomics examines nucleotide modifications in mRNA and their impact on gene expression. The low abundance of nucleotide modifications and technical limitations, however, have hampered systematic analysis of their occurrence and functions. Selective chemical and immunological identification of modified nucleotides has revealed global candidate topology maps for many modifications in mRNA, but further technical advances to increase confidence will be necessary. Single-molecule sequencing introduced by Oxford Nanopore now promises to overcome such limitations, and we summarize current progress with a particular focus on the bioinformatic challenges of this novel sequencing technology.Item Penguin: A Tool for Predicting Pseudouridine Sites in Direct RNA Nanopore Sequencing Data(Elsevier, 2022) Hassan, Doaa; Acevedo, Daniel; Daulatabad, Swapna Vidhur; Mir, Quoseena; Janga, Sarath Chandra; BioHealth Informatics, School of Informatics and ComputingPseudouridine is one of the most abundant RNA modifications, occurring when uridines are catalyzed by Pseudouridine synthase proteins. It plays an important role in many biological processes and has been reported to have application in drug development. Recently, the single-molecule sequencing techniques such as the direct RNA sequencing platform offered by Oxford Nanopore technologies have enabled direct detection of RNA modifications on the molecule being sequenced. In this study, we introduce a tool called Penguin that integrates several machine learning (ML) models to identify RNA Pseudouridine sites on Nanopore direct RNA sequencing reads. Pseudouridine sites were identified on single molecule sequencing data collected from direct RNA sequencing resulting in 723K reads in Hek293 and 500K reads in Hela cell lines. Penguin extracts a set of features from the raw signal measured by the Oxford Nanopore and the corresponding basecalled k-mer. Those features are used to train the predictors included in Penguin, which in turn, can predict whether the signal is modified by the presence of Pseudouridine sites in the testing phase. We have included various predictors in Penguin, including Support vector machines (SVM), Random Forest (RF), and Neural network (NN). The results on the two benchmark data sets for Hek293 and Hela cell lines show outstanding performance of Penguin either in random split testing or in independent validation testing. In random split testing, Penguin has been able to identify Pseudouridine sites with a high accuracy of 93.38% by applying SVM to Hek293 benchmark dataset. In independent validation testing, Penguin achieves an accuracy of 92.61% by training SVM with Hek293 benchmark dataset and testing it for identifying Pseudouridine sites on Hela benchmark dataset. Thus, Penguin outperforms the existing Pseudouridine predictors in the literature by 16 % higher accuracy than those predictors using independent validation testing. Employing penguin to predict Pseudouridine revealed a significant enrichment of “regulation of mRNA 3’-end processing” in Hek293 cell line and positive regulation of transcription from RNA polymerase II promoter involved in cellular response to chemical stimulus in Hela cell line. Penguin software and models are available on GitHub at https://github.com/Janga-Lab/Penguin and can be readily employed for predicting Ψ sites from Nanopore direct RNA-sequencing datasets.