- Browse by Subject
Browsing by Subject "Molecular genetics"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item Conditional Myh9 and Myh10 inactivation in adult mouse renal epithelium results in progressive kidney disease(American Society for Clinical Investigation, 2020-11-05) Otterpohl, Karla L.; Busselman, Brook W.; Ratnayake, Ishara; Hart, Ryan G.; Hart, Kimberly R.; Evans, Claire M.; Phillips, Carrie L.; Beach, Jordan R.; Ahrenkiel, Phil; Molitoris, Bruce A.; Surendran, Kameswaran; Chandrasekar, Indra; Pathology and Laboratory Medicine, School of MedicineActin-associated nonmuscle myosin II (NM2) motor proteins play critical roles in a myriad of cellular functions, including endocytosis and organelle transport pathways. Cell type–specific expression and unique subcellular localization of the NM2 proteins, encoded by the Myh9 and Myh10 genes, in the mouse kidney tubules led us to hypothesize that these proteins have specialized functional roles within the renal epithelium. Inducible conditional knockout (cKO) of Myh9 and Myh10 in the renal tubules of adult mice resulted in progressive kidney disease. Prior to overt renal tubular injury, we observed intracellular accumulation of the glycosylphosphatidylinositol-anchored protein uromodulin (UMOD) and gradual loss of Na+ K+ 2Cl– cotransporter from the apical membrane of the thick ascending limb epithelia. The UMOD accumulation coincided with expansion of endoplasmic reticulum (ER) tubules and activation of ER stress and unfolded protein response pathways in Myh9&10-cKO kidneys. We conclude that NM2 proteins are required for localization and transport of UMOD and loss of function results in accumulation of UMOD and ER stress–mediated progressive renal tubulointerstitial disease. These observations establish cell type–specific role(s) for NM2 proteins in regulation of specialized renal epithelial transport pathways and reveal the possibility that human kidney disease associated with MYH9 mutations could be of renal epithelial origin.Item Emerging Prognostic Biomarkers in Testicular Germ Cell Tumors: Looking Beyond Established Practice(Frontiers, 2018-11-28) Chovanec, Michal; Albany, Constantine; Mego, Michal; Montironi, Rodolfo; Cimadamore, Alessia; Cheng, Liang; Pathology and Laboratory Medicine, School of MedicineTesticular germ cell tumors are unique among solid cancers. Historically, this disease was deadly if progressed beyond the stage I. The implementation of cisplatin-based chemotherapy regimens has drastically changed the clinical outcome of metastatic testicular cancer. Several biomarkers were established to refine the prognosis by International Germ Cell Collaborative Group in 1997. Among these, the most significant were primary tumor site; metastatic sites, such as non-pulmonary visceral metastases; and the amplitude of serum tumor markers α-fetoprotein, β-chorionic gonadotropin, and lactate dehydrogenase. Since then, oncology has experienced discoveries of various molecular biomarkers to further refine the prognosis and treatment of malignancies. However, the ability to predict the prognosis and treatment response in germ cell tumors did not improve for many years. Clinical trials with novel targeting agents that were conducted in refractory germ cell tumor patients have proven to have negative outcomes. With the recent advances and developments, novel biomarkers emerge in the field of germ cell tumor oncology. This review article aims to summarize the current knowledge in the research of novel prognostic biomarkers in testicular germ cell tumors.Item Genetic Screen in Chlamydia muridarum Reveals Role for an Interferon-Induced Host Cell Death Program in Antimicrobial Inclusion Rupture(American Society for Microbiology, 2019-04-09) Giebel, Amanda M.; Hu, Shuai; Rajaram, Krithika; Finethy, Ryan; Toh, Evelyn; Brothwell, Julie A.; Morrison, Sandra G.; Suchland, Robert J.; Stein, Barry D.; Coers, Jörn; Morrison, Richard P.; Nelson, David E.; Microbiology and Immunology, School of MedicineInterferon-regulated immune defenses protect mammals from pathogenically diverse obligate intracellular bacterial pathogens of the genus Chlamydia Interferon gamma (IFN-γ) is especially important in controlling the virulence of Chlamydia species and thus impacts the modeling of human chlamydial infection and disease in mice. How IFN-γ contributes to cell-autonomous defenses against Chlamydia species and how these pathogens evade IFN-γ-mediated immunity in their natural hosts are not well understood. We conducted a genetic screen which identified 31 IFN-γ-sensitive (Igs) mutants of the mouse model pathogen Chlamydia muridarum Genetic suppressor analysis and lateral gene transfer were used to map the phenotype of one of these mutants, Igs4, to a missense mutation in a putative chlamydial inclusion membrane protein, TC0574. We observed the lytic destruction of Igs4-occupied inclusions and accompanying host cell death in response to IFN-γ priming or various proapoptotic stimuli. However, Igs4 was insensitive to IFN-γ-regulated cell-autonomous defenses previously implicated in anti-Chlamydia trachomatis host defense in mice. Igs4 inclusion integrity was restored by caspase inhibitors, indicating that the IFN-γ-mediated destruction of Igs4 inclusions is dependent upon the function of caspases or related prodeath cysteine proteases. We further demonstrated that the Igs4 mutant is immune restricted in an IFN-γ-dependent manner in a mouse infection model, thereby implicating IFN-γ-mediated inclusion destruction and host cell death as potent in vivo host defense mechanisms to which wild-type C. muridarum is resistant. Overall, our results suggest that C. muridarum evolved resistance mechanisms to counter IFN-γ-elicited programmed cell death and the associated destruction of intravacuolar pathogens.IMPORTANCE Multiple obligatory intracellular bacteria in the genus Chlamydia are important pathogens. In humans, strains of C. trachomatis cause trachoma, chlamydia, and lymphogranuloma venereum. These diseases are all associated with extended courses of infection and reinfection that likely reflect the ability of chlamydiae to evade various aspects of host immune responses. Interferon-stimulated genes, driven in part by the cytokine interferon gamma, restrict the host range of various Chlamydia species, but how these pathogens evade interferon-stimulated genes in their definitive host is poorly understood. Various Chlamydia species can inhibit death of their host cells and may have evolved this strategy to evade prodeath signals elicited by host immune responses. We present evidence that chlamydia-induced programmed cell death resistance evolved to counter interferon- and immune-mediated killing of Chlamydia-infected cells.Item Molecular genetic studies of autosomal dominant, systemic amyloidosis(1989) Nichols, William CharlesItem Molecular genetics of prealbumin-associated autosomal dominant amyloidosis(1987) Wallace, Margaret ReberItem A New Statistic to Evaluate Imputation Reliability(Public Library of Science, 2010-03-15) Lin, Peng; Hartz, Sarah M.; Zhang, Zhehao; Saccone, Scott F.; Wang, Jia; Tischfield, Jay A.; Edenberg, Howard J.; Kramer, John R.; Goate, Alison M.; Bierut, Laura J.; Rice, John P.; COGA Collaborators COGEND Collaborators, GENEVA; Biochemistry and Molecular Biology, School of MedicineBackground As the amount of data from genome wide association studies grows dramatically, many interesting scientific questions require imputation to combine or expand datasets. However, there are two situations for which imputation has been problematic: (1) polymorphisms with low minor allele frequency (MAF), and (2) datasets where subjects are genotyped on different platforms. Traditional measures of imputation cannot effectively address these problems. Methodology/Principal Findings We introduce a new statistic, the imputation quality score (IQS). In order to differentiate between well-imputed and poorly-imputed single nucleotide polymorphisms (SNPs), IQS adjusts the concordance between imputed and genotyped SNPs for chance. We first evaluated IQS in relation to minor allele frequency. Using a sample of subjects genotyped on the Illumina 1 M array, we extracted those SNPs that were also on the Illumina 550 K array and imputed them to the full set of the 1 M SNPs. As expected, the average IQS value drops dramatically with a decrease in minor allele frequency, indicating that IQS appropriately adjusts for minor allele frequency. We then evaluated whether IQS can filter poorly-imputed SNPs in situations where cases and controls are genotyped on different platforms. Randomly dividing the data into “cases” and “controls”, we extracted the Illumina 550 K SNPs from the cases and imputed the remaining Illumina 1 M SNPs. The initial Q-Q plot for the test of association between cases and controls was grossly distorted (λ = 1.15) and had 4016 false positives, reflecting imputation error. After filtering out SNPs with IQS<0.9, the Q-Q plot was acceptable and there were no longer false positives. We then evaluated the robustness of IQS computed independently on the two halves of the data. In both European Americans and African Americans the correlation was >0.99 demonstrating that a database of IQS values from common imputations could be used as an effective filter to combine data genotyped on different platforms. Conclusions/Significance IQS effectively differentiates well-imputed and poorly-imputed SNPs. It is particularly useful for SNPs with low minor allele frequency and when datasets are genotyped on different platforms.Item A RIPOR2 in-frame deletion is a frequent and highly penetrant cause of adult-onset hearing loss(BMJ, 2020) de Bruijn, Suzanne E.; Smits, Jeroen J.; Liu, Chang; Lanting, Cornelis P.; Beynon, Andy J.; Blankevoort, Joëlle; Oostrik, Jaap; Koole, Wouter; de Vrieze, Erik; Cremers, Cor W.R.J.; Cremers, Frans P.M.; Roosing, Susanne; Yntema, Helger G.; Kunst, Henricus P.M.; Zhao, Bo; Pennings, Ronald J.E.; Kremer, Hannie; DOOFNL Consortium; Otolaryngology -- Head and Neck Surgery, School of MedicineBackground: Hearing loss is one of the most prevalent disabilities worldwide, and has a significant impact on quality of life. The adult-onset type of the condition is highly heritable but the genetic causes are largely unknown, which is in contrast to childhood-onset hearing loss. Methods: Family and cohort studies included exome sequencing and characterisation of the hearing phenotype. Ex vivo protein expression addressed the functional effect of a DNA variant. Results: An in-frame deletion of 12 nucleotides in RIPOR2 was identified as a highly penetrant cause of adult-onset progressive hearing loss that segregated as an autosomal dominant trait in 12 families from the Netherlands. Hearing loss associated with the deletion in 63 subjects displayed variable audiometric characteristics and an average (SD) age of onset of 30.6 (14.9) years (range 0-70 years). A functional effect of the RIPOR2 variant was demonstrated by aberrant localisation of the mutant RIPOR2 in the stereocilia of cochlear hair cells and failure to rescue morphological defects in RIPOR2-deficient hair cells, in contrast to the wild-type protein. Strikingly, the RIPOR2 variant is present in 18 of 22 952 individuals not selected for hearing loss in the Southeast Netherlands. Conclusion: Collectively, the presented data demonstrate that an inherited form of adult-onset hearing loss is relatively common, with potentially thousands of individuals at risk in the Netherlands and beyond, which makes it an attractive target for developing a (genetic) therapy.Item Syntaxin1A overexpression and pain insensitivity in individuals with 7q11.23 duplication syndrome(American Society for Clinical Investigation, 2024-02-22) Iadarola, Michael J.; Sapio, Matthew R.; Loydpierson, Amelia J.; Mervis, Carolyn B.; Fehrenbacher, Jill C.; Vasko, Michael R.; Maric, Dragan; Eisenberg, Daniel P.; Nash, Tiffany A.; Kippenhan, J. Shane; Garvey, Madeline H.; Mannes, Andrew J.; Gregory, Michael D.; Berman, Karen F.; Pharmacology and Toxicology, School of MedicineGenetic modifications leading to pain insensitivity phenotypes, while rare, provide invaluable insights into the molecular biology of pain and reveal targets for analgesic drugs. Pain insensitivity typically results from Mendelian loss-of-function mutations in genes expressed in nociceptive (pain-sensing) dorsal root ganglion (DRG) neurons that connect the body to the spinal cord. We document a pain insensitivity mechanism arising from gene overexpression in individuals with the rare 7q11.23 duplication syndrome (Dup7), who have 3 copies of the approximately 1.5-megabase Williams syndrome (WS) critical region. Based on parental accounts and pain ratings, people with Dup7, mainly children in this study, are pain insensitive following serious injury to skin, bones, teeth, or viscera. In contrast, diploid siblings (2 copies of the WS critical region) and individuals with WS (1 copy) show standard reactions to painful events. A converging series of human assessments and cross-species cell biological and transcriptomic studies identified 1 likely candidate in the WS critical region, STX1A, as underlying the pain insensitivity phenotype. STX1A codes for the synaptic vesicle fusion protein syntaxin1A. Excess syntaxin1A was demonstrated to compromise neuropeptide exocytosis from nociceptive DRG neurons. Taken together, these data indicate a mechanism for producing “genetic analgesia” in Dup7 and offer previously untargeted routes to pain control.Item The challenges and opportunities of offering and integrating training in clinical molecular genetics and clinical cytogenetics: A survey of LGG Fellowship Program Directors(Elsevier, 2024) Deignan, Joshua L.; Aggarwal, Vimla; Bale, Allen E.; Bellissimo, Daniel B.; Booker, Jessica K.; Cao, Yang; Crooks, Kristy R.; Deak, Kristen L.; Del Gaudio, Daniela; Funke, Birgit; Hoppman, Nicole L.; Horner, Vanessa; Hufnagel, Robert B.; Jackson-Cook, Colleen; Koduru, Prasad; Leung, Marco L.; Li, Shibo; Liu, Pengfei; Mao, Minjie Luo Rong; Mason-Suares, Heather; Mikhail, Fady M.; Moore, Stephen R.; Naeem, Rizwan C.; Pollard, Laura M.; Repnikova, Elena A.; Shao, Lina; Shaw, Brandon M.; Shetty, Shashirekha; Smolarek, Teresa A.; Spiteri, Elizabeth; Van Ziffle, Jessica; Vance, Gail H.; Vnencak-Jones, Cindy L.; Williams, Eli S.; Medical and Molecular Genetics, School of MedicinePurpose: The specialty of Laboratory Genetics and Genomics (LGG) was created in 2017 in an effort to reflect the increasing convergence in technologies and approaches between clinical molecular genetics and clinical cytogenetics. However, there has not yet been any formal evaluation of the merging of these disciplines and the challenges faced by Program Directors (PDs) tasked with ensuring the successful training of laboratory geneticists under the new model. Methods: An electronic multi-question Qualtrics survey was created and was sent to the PD for each of the Accreditation Council for Graduate Medical Education-accredited LGG fellowship programs at the time. The data were collected, and the responses were aggregated for each question. Results: All of the responding PDs had started training at least 1 LGG fellow. PDs noted challenges with funding, staff shortages, molecular/cytogenetics content integration, limited total training time, increased remote work, increased sendout testing, and a lack of prior cytogenetics knowledge among incoming fellows. Conclusion: This survey attempted to assess the challenges that LGG PDs have been facing in offering and integrating clinical molecular genetics and clinical cytogenetics fellowship training. Common challenges between programs were noted, and a set of 6 concluding comments are provided to facilitate future discussion.