- Browse by Subject
Browsing by Subject "Microglia"
Now showing 1 - 10 of 66
Results Per Page
Sort Options
Item 4-Ethylguaiacol Modulates Neuroinflammation and Promotes Heme Oxygenase-1 Expression to Ameliorate Brain Injury in Ischemic Stroke(Frontiers Media, 2022-07-01) Weng, Wen-Tsan; Kuo, Ping-Chang; Scofield, Barbara A.; Paraiso, Hallel C.; Brown, Dennis A.; Yu, I-Chen; Yen, Jui-Hung; Microbiology and Immunology, School of MedicineIschemic stroke is caused by a sudden reduction in cerebral blood flow that subsequently induces a complex cascade of pathophysiological responses, leading to brain inflammation and irreversible infarction. 4-ethylguaiacol (4-EG) is reported to suppress inflammatory immune responses. However, whether 4-EG exerts anti-inflammatory effects in ischemic stroke remains unexplored. We evaluated the therapeutic potential of 4-EG and examined the cellular and molecular mechanisms underlying the protective effects of 4-EG in ischemic stroke. The effect of 4-EG in ischemic stroke was determined by using a transient middle cerebral artery occlusion (MCAO) animal model followed by exploring the infarct size, neurological deficits, microglia activation, inflammatory cytokine production, blood-brain barrier (BBB) disruption, brain endothelial cell adhesion molecule expression, and microglial heme oxygenase-1 (HO-1) expression. Nrf2-/- and HO-1 inhibitor ZnPP-treated mice were also subjected to MCAO to evaluate the role of the Nrf2/HO-1 pathway in 4-EG-mediated protection in ischemic stroke. We found that 4-EG attenuated infarct size and neurological deficits, and lessened BBB disruption in ischemic stroke. Further investigation revealed that 4-EG suppressed microglial activation, peripheral inflammatory immune cell infiltration, and brain endothelial cell adhesion molecule upregulation in the ischemic brain. Finally, we identified that the protective effect of 4-EG in ischemic stroke was abolished in Nrf2-/- and ZnPP-treated MCAO mice. Our results identified that 4-EG confers protection against ischemic stroke and reveal that the protective effect of 4-EG in ischemic stroke is mediated through the induction of the Nrf2/HO1 pathway. Thus, our findings suggest that 4-EG could be developed as a novel therapeutic agent for the treatment of ischemic stroke.Item 4-Ethylguaiacol modulates neuroinflammation and Th1/Th17 differentiation to ameliorate disease severity in experimental autoimmune encephalomyelitis(BMC, 2021-05-11) Weng, Wen-Tsan; Kuo, Ping-Chang; Brown, Dennis A.; Scofield, Barbara A.; Furnas, Destin; Paraiso, Hallel C.; Wang, Pei-Yu; Yu, I-Chen; Yen, Jui-Hung; Anatomy and Cell Biology, School of MedicineBackground: Multiple sclerosis (MS) is a progressive autoimmune disease characterized by the accumulation of pathogenic inflammatory immune cells in the central nervous system (CNS) that subsequently causes focal inflammation, demyelination, axonal injury, and neuronal damage. Experimental autoimmune encephalomyelitis (EAE) is a well-established murine model that mimics the key features of MS. Presently, the dietary consumption of foods rich in phenols has been reported to offer numerous health benefits, including anti-inflammatory activity. One such compound, 4-ethylguaiacol (4-EG), found in various foods, is known to attenuate inflammatory immune responses. However, whether 4-EG exerts anti-inflammatory effects on modulating the CNS inflammatory immune responses remains unknown. Thus, in this study, we assessed the therapeutic effect of 4-EG in EAE using both chronic and relapsing-remitting animal models and investigated the immunomodulatory effects of 4-EG on neuroinflammation and Th1/Th17 differentiation in EAE. Methods: Chronic C57BL/6 EAE and relapsing-remitting SJL/J EAE were induced followed by 4-EG treatment. The effects of 4-EG on disease progression, peripheral Th1/Th17 differentiation, CNS Th1/Th17 infiltration, microglia (MG) activation, and blood-brain barrier (BBB) disruption in EAE were evaluated. In addition, the expression of MMP9, MMP3, HO-1, and Nrf2 was assessed in the CNS of C57BL/6 EAE mice. Results: Our results showed that 4-EG not only ameliorated disease severity in C57BL/6 chronic EAE but also mitigated disease progression in SJL/J relapsing-remitting EAE. Further investigations of the cellular and molecular mechanisms revealed that 4-EG suppressed MG activation, mitigated BBB disruption, repressed MMP3/MMP9 production, and inhibited Th1 and Th17 infiltration in the CNS of EAE. Furthermore, 4-EG suppressed Th1 and Th17 differentiation in the periphery of EAE and in vitro Th1 and Th17 cultures. Finally, we found 4-EG induced HO-1 expression in the CNS of EAE in vivo as well as in MG, BV2 cells, and macrophages in vitro. Conclusions: Our work demonstrates that 4-EG confers protection against autoimmune disease EAE through modulating neuroinflammation and inhibiting Th1 and Th17 differentiation, suggesting 4-EG, a natural compound, could be potentially developed as a therapeutic agent for the treatment of MS/EAE.Item Acoustofluidic Assembly of 3D Neurospheroids to Model Alzheimer’s Disease(Royal Society of Chemistry, 2020-09-28) Cai, Hongwei; Ao, Zheng; Hu, Liya; Moon, Younghye; Wu, Zhuhao; Lu, Hui-Chen; Kim, Jungsu; Guo, Feng; Medical and Molecular Genetics, School of MedicineNeuroinflammation plays a central role in the progression of many neurodegenerative diseases such as Alzheimer's disease, and challenges remain in modeling the complex pathological or physiological processes. Here, we report an acoustofluidic method that can rapidly construct 3D neurospheroids and inflammatory microenvironments for modeling microglia-mediated neuroinflammation in Alzheimer's disease. By incorporating a unique contactless and label-free acoustic assembly, this cell culture platform can assemble dissociated embryonic mouse brain cells into hundreds of uniform 3D neurospheroids with controlled cell numbers, composition (e.g. neurons, astrocytes, and microglia), and environmental components (e.g. amyloid-β aggregates) in hydrogel within minutes. Moreover, this platform can maintain and monitor the interaction among neurons, astrocytes, microglia, and amyloid-β aggregates in real-time for several days to weeks, after the integration of a high-throughput, time-lapse cell imaging approach. We demonstrated that our engineered 3D neurospheroids can represent the amyloid-β neurotoxicity, which is one of the main pathological features of Alzheimer's disease. Using this method, we also investigated the microglia migratory behaviors and activation in the engineered 3D inflammatory microenvironment at a high throughput manner, which is not easy to achieve in 2D neuronal cultures or animal models. Along with the simple fabrication and setup, the acoustofluidic technology is compatible with conventional Petri dishes and well-plates, supports the fine-tuning of the cellular and environmental components of 3D neurospheroids, and enables the high-throughput cellular interaction investigation. We believe our technology may be widely used to facilitate 3D in vitro brain models for modeling neurodegenerative diseases, discovering new drugs, and testing neurotoxicity.Item Activated endothelial cells induce a distinct type of astrocytic reactivity(Springer Nature, 2022-03-29) Taylor, Xavier; Cisternas, Pablo; Jury, Nur; Martinez, Pablo; Huang, Xiaoqing; You, Yanwen; Redding-Ochoa, Javier; Vidal, Ruben; Zhang, Jie; Troncoso, Juan; Lasagna-Reeves, Cristian A.; Anatomy, Cell Biology and Physiology, School of MedicineReactive astrogliosis is a universal response of astrocytes to abnormal events and injuries. Studies have shown that proinflammatory microglia can polarize astrocytes (designated A1 astrocytes) toward a neurotoxic phenotype characterized by increased Complement Component 3 (C3) expression. It is still unclear if inflammatory stimuli from other cell types may also be capable of inducing a subset of C3+ neurotoxic astrocytes. Here, we show that a subtype of C3+ neurotoxic astrocytes is induced by activated endothelial cells that is distinct from astrocytes activated by microglia. Furthermore, we show that endothelial-induced astrocytes have upregulated expression of A1 astrocytic genes and exhibit a distinctive extracellular matrix remodeling profile. Finally, we demonstrate that endothelial-induced astrocytes are Decorin-positive and are associated with vascular amyloid deposits but not parenchymal amyloid plaques in mouse models and AD/CAA patients. These findings demonstrate the existence of potentially extensive and subtle functional diversity of C3+-reactive astrocytes.Item Aducanumab anti-amyloid immunotherapy induces sustained microglial and immune alterations(Rockefeller University, 2024) Cadiz, Mika P.; Gibson, Katelin A.; Todd, Kennedi T.; Nascari, David G.; Massa, Nashali; Lilley, Meredith T.; Olney, Kimberly C.; Al-Amin, Md Mamun; Jiang, Hong; Holtzman, David M.; Fryer, John D.; Medical and Molecular Genetics, School of MedicineAducanumab, an anti-amyloid immunotherapy for Alzheimer's disease, efficiently reduces Aβ, though its plaque clearance mechanisms, long-term effects, and effects of discontinuation are not fully understood. We assessed the effect of aducanumab treatment and withdrawal on Aβ, neuritic dystrophy, astrocytes, and microglia in the APP/PS1 amyloid mouse model. We found that reductions in amyloid and neuritic dystrophy during acute treatment were accompanied by microglial and astrocytic activation, and microglial recruitment to plaques and adoption of an aducanumab-specific pro-phagocytic and pro-degradation transcriptomic signature, indicating a role for microglia in aducanumab-mediated Aβ clearance. Reductions in Aβ and dystrophy were sustained 15 but not 30 wk after discontinuation, and reaccumulation of plaques coincided with loss of the microglial aducanumab signature and failure of microglia to reactivate. This suggests that despite the initial benefit from treatment, microglia are unable to respond later to restrain plaque reaccumulation, making further studies on the effect of amyloid-directed immunotherapy withdrawal crucial for assessing long-term safety and efficacy.Item Air Pollution Exposure and the Lung-Brain Axis: Implications for Alzheimer's Disease(2022-03) Greve, Hendrik Jacob; Oblak, Adrian; Block, Michelle; Nass, Richard; Landreth, GaryAlzheimer’s disease (AD) is a devastating neurodegenerative disease that is expected to affect approximately 6.2 million Americans. Despite its high prevalence, the mechanisms underlying AD remain poorly understood. In recent years, increasing reports indicate that exposure to urban air pollution is a risk factor for the development of AD. However, the mechanistic underpinnings of this association are not well studied. Rats exposed to diesel exhaust (DE) showed neuroinflammation and impaired expression of TREM2 and disease-associated microglia (DAM), a cell subtype hypothesized to play beneficial roles during neurodegeneration, markers. Microglia in the cortex of rats exposed to DE, also showed decreased association with the vasculature, providing a novel link between the microglia and the brain vasculature. Examining the functional role of TREM2 during DE exposures, Trem2-/- mice showed an altered pro-inflammatory profile in both the brain and lungs in response to DE particles as well as altered phagocytic oxidase related gene expression. Examining another prominent component of air pollution, ozone (O3), in a mouse model of AD, it was discovered that subchronic O3 exposure exacerbates amyloid pathology through impaired microglial-plaque association in 5xFAD mice. 5xFAD mice exposed to O3 also showed increased expression of pro-inflammatory cytokines, increased markers of dystrophic neurites, and decreased expression of key acetylcholinergic pathway components. Examining the peri-plaque microenvironment, it was discovered that O3 dysregulates key DAM proteins and amyloid processing proteins. In the lung, it was found that O3 exacerbated immune cell infiltration in 5xFAD mice compared to WT controls, suggesting that ongoing amyloid pathology regulates pulmonary immune response to air pollution. To examine how O3-induced pulmonary immune responses may be signaling to the CNS, we examined the serum of 5xFAD mice, where HMGB1, VEGF, and IL-9 were upregulated. Injection of rHMGB1 into mice showed similar gene changes to 5xFAD mice exposed to O3, along with impaired Trem2 expression. Using a peripheral myeloid specific knock-out model of HMGB1, we also show that HMGB1 regulates O3-induced Trem2 expression impairment. Taken together, these data support that air pollution exposure impairs TREM2, DAM cells, and the microglial plaque response through a bidirectional lung-brain axis to exacerbate AD-like pathology.Item Aspergillus versicolor Inhalation Triggers Neuroimmune, Glial, and Neuropeptide Transcriptional Changes(Sage, 2021) Ladd, Thatcher B.; Johnson, James A., Jr.; Mumaw, Christen L.; Greve, Hendrik J.; Xuei, Xiaoling; Simpson, Ed; Barnes, Mark A.; Green, Brett J.; Croston, Tara L.; Ahmed, Chandrama; Lemons, Angela; Beezhold, Donald H.; Block, Michelle L.; Medical and Molecular Genetics, School of MedicineIncreasing evidence associates indoor fungal exposure with deleterious central nervous system (CNS) health, such as cognitive and emotional deficits in children and adults, but the specific mechanisms by which it might impact the brain are poorly understood. Mice were exposed to filtered air, heat-inactivated Aspergillus versicolor (3 × 105 spores), or viable A. versicolor (3 × 105 spores) via nose-only inhalation exposure 2 times per week for 1, 2, or 4 weeks. Analysis of cortex, midbrain, olfactory bulb, and cerebellum tissue from mice exposed to viable A. versicolor spores for 1, 2, and 4 weeks revealed significantly elevated pro-inflammatory (Tnf and Il1b) and glial activity (Gdnf and Cxc3r1) gene expression in several brain regions when compared to filtered air control, with the most consistent and pronounced neuroimmune response 48H following the 4-week exposure in the midbrain and frontal lobe. Bulk RNA-seq analysis of the midbrain tissue confirmed that 4 weeks of A. versicolor exposure resulted in significant transcriptional enrichment of several biological pathways compared to the filtered air control, including neuroinflammation, glial cell activation, and regulation of postsynaptic organization. Upregulation of Drd1, Penk, and Pdyn mRNA expression was confirmed in the 4-week A. versicolor exposed midbrain tissue, highlighting that gene expression important for neurotransmission was affected by repeated A. versicolor inhalation exposure. Taken together, these findings indicate that the brain can detect and respond to A. versicolor inhalation exposure with changes in neuroimmune and neurotransmission gene expression, providing much needed insight into how inhaled fungal exposures can affect CNS responses and regulate neuroimmune homeostasis.Item Atorvastatin rescues hyperhomocysteinemia-induced cognitive deficits and neuroinflammatory gene changes(BMC, 2023-09-01) Weekman, Erica M.; Johnson, Sherika N.; Rogers, Colin B.; Sudduth, Tiffany L.; Xie, Kevin; Qiao, Qi; Fardo, David W.; Bottiglieri, Teodoro; Wilcock, Donna M.; Neurology, School of MedicineBackground: Epidemiological data suggests statins could reduce the risk of dementia, and more specifically, Alzheimer's disease (AD). Pre-clinical data suggests statins reduce the risk of dementia through their pleiotropic effects rather than their cholesterol lowering effects. While AD is a leading cause of dementia, it is frequently found co-morbidly with cerebral small vessel disease and other vascular contributions to cognitive impairment and dementia (VCID), which are another leading cause of dementia. In this study, we determined if atorvastatin ameliorated hyperhomocysteinemia (HHcy)-induced VCID. Methods: Wild-type (C57Bl6/J) mice were placed on a diet to induce HHcy or a control diet each with or without atorvastatin for 14 weeks. Mice underwent novel object recognition testing before tissue collection. Plasma total cholesterol and total homocysteine as well as related metabolites were measured. Using qPCR and NanoString technology, we profiled glial cell-associated gene expression changes. Finally, microglial morphology, astrocyte end feet, and microhemorrhages were analyzed using histological methods. Results: Atorvastatin treatment of HHcy in mice led to no changes in total cholesterol but decreases in total homocysteine in plasma. While HHcy decreased expression of many glial genes, atorvastatin rescued these gene changes, which mostly occurred in oligodendrocytes and microglia. Microglia in HHcy mice with atorvastatin were trending towards fewer processes compared to control with atorvastatin, but there were no atorvastatin effects on astrocyte end feet. While atorvastatin treatment was trending towards increasing the area of microhemorrhages in HHcy mice in the frontal cortex, it only slightly (non-significantly) reduced the number of microhemorrhages. Finally, atorvastatin treatment in HHcy mice led to improved cognition on the novel object recognition task. Conclusions: These data suggest that atorvastatin rescued cognitive changes induced by HHcy most likely through lowering plasma total homocysteine and rescuing gene expression changes rather than impacts on vascular integrity or microglial changes.Item Atypical microglial response to biodiesel exhaust in healthy and hypertensive rats(Elsevier, 2017-03) Mumaw, Christen L.; Surace, Michael; Levesque, Shannon; Kodavanti, Urmila P.; Kodavanti, Prasada Rao S.; Royland, Joyce E.; Block, Michelle L.; Anatomy and Cell Biology, School of MedicineAccumulating evidence suggests a deleterious role for urban air pollution in central nervous system (CNS) diseases and neurodevelopmental disorders. Microglia, the resident innate immune cells and sentinels in the brain, are a common source of neuroinflammation and are implicated in how air pollution may exert CNS effects. While renewable energy, such as soy-based biofuel, is of increasing public interest, there is little information on how soy biofuel may affect the brain. To address this, male spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto (WKY) rats were exposed to 100% Soy Biodiesel Exhaust (100SBDE; 0, 50, 150 and 500 μg/m3) by inhalation for 4 h/day for 4 weeks (5 days/week). IBA-1 staining of microglia in the substantia nigra revealed significant changes in morphology with 100SBDE exposure in rats from both genotypes, where the SHR were less sensitive. Further analysis failed to show consistent changes in pro-inflammatory cytokine expression, nitrated protein, and arginase1 expression in brain tissue from either rat strain exposed to 100SBDE. CX3CR1 and fractalkine mRNA expression were lower in the striatum of all 100SBDE exposed rats, but greater SBDE exposure was required for loss of fractalkine expression in the SHR. Together, these data support that month-long 100SBDE exposure impacts the basal ganglia with changes in microglia morphology, an impaired fractalkine axis, and an atypical activation response without traditional markers of M1 or M2 activation, where the SHR may be less sensitive to these effects.Item Brain astrocytes and microglia express functional MR1 molecules that present microbial antigens to mucosal-associated invariant T (MAIT) cells(Elsevier, 2020-12-15) Priya, Raj; Brutkiewicz, Randy R.; Microbiology and Immunology, School of MedicineIt is unknown whether brain astrocytes and microglia have the capacity to present microbial antigens via the innate immune MR1/MAIT cell axis. We have detected MAIT cells in the normal mouse brain and found that both astrocytes and microglia are MR1+. When we stimulated brain astrocytes and microglia with E. coli, and then co-cultured them with MAIT cells, MR1 surface expression was upregulated and MAIT cells were activated in an antigen-dependent manner. Considering the association of MAIT cells with inflammatory conditions, including those in the CNS, the MR1/MAIT cell axis could be a novel therapeutic target in neuroinflammatory disorders.