- Browse by Subject
Browsing by Subject "Memristor"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item HODGKIN-HUXLEY MODEL FOR ACTION POTENTIAL: MEMRISTIVE CHARACTERISTICS(Office of the Vice Chancellor for Research, 2012-04-13) Mirza, Qurat-ul-Ann; Joglekar, YogeshMemristor, a short for memory resistor, is the fourth ideal circuit element whose value varies as a function of charge that has passed through the de-vice. Voltage-gated ion channels in biological membranes share this charac-teristic of a memristor. In 1952, Hodgkin and Huxley (H-H) developed an electrical circuit model (HH model) to describe the time-dependent action potentials mediated by voltage-gated ion channels. We investigate the de-pendence of the action potential, including the onset of repeated spiking, on the applied current I, sodium and potassium channel conductance, and the membrane capacitance. We use a MATLAB code with the fourth-order Runge-Kutta method to solve the HH equations. Our results suggest that the memristive characteristics of the ion channels can be tuned over a wide range of parameters.Item Memristor: modulating resistance via electron-ion interactions(Office of the Vice Chancellor for Research, 2010-04-09) Joglekar, Yogesh N.Memristor – a resistor with memory – is a long-postulated but recently discovered new circuit element that complements the three well-known circuit elements, namely a resistor, a capacitor, and an inductor. It was experimentally realized in a titanium oxide thin film doped with oxygen vacancies. The resistance of a memristor, and memristive system in general, depends on the electrical charge that has flown through it and not just on the voltage applied to it. We use a nonlinear, asymmetric drift model to describe the motion of dopant ions that, in turn, determines the effective resistance of the memristor. This interplay between ionic and electronic transport provides a natural mechanism for memory and switching behavior. We obtain the electrical properties of basic memristive circuits, and show that they exhibit non-exponential current and charge decay, negative differential conductance, and frequency-dependent hysteresis in the current-voltage characteristics. We then present a Lagrangian approach to describe the dynamics of memristive systems and its implications to quantum effects in memristors and other memory elements such as mem-capacitors and mem-inductors.