HODGKIN-HUXLEY MODEL FOR ACTION POTENTIAL: MEMRISTIVE CHARACTERISTICS
Date
Language
Embargo Lift Date
Department
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract
Memristor, a short for memory resistor, is the fourth ideal circuit element whose value varies as a function of charge that has passed through the de-vice. Voltage-gated ion channels in biological membranes share this charac-teristic of a memristor. In 1952, Hodgkin and Huxley (H-H) developed an electrical circuit model (HH model) to describe the time-dependent action potentials mediated by voltage-gated ion channels. We investigate the de-pendence of the action potential, including the onset of repeated spiking, on the applied current I, sodium and potassium channel conductance, and the membrane capacitance. We use a MATLAB code with the fourth-order Runge-Kutta method to solve the HH equations. Our results suggest that the memristive characteristics of the ion channels can be tuned over a wide range of parameters.