HODGKIN-HUXLEY MODEL FOR ACTION POTENTIAL: MEMRISTIVE CHARACTERISTICS

Date
2012-04-13
Language
American English
Embargo Lift Date
Department
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Office of the Vice Chancellor for Research
Abstract

Memristor, a short for memory resistor, is the fourth ideal circuit element whose value varies as a function of charge that has passed through the de-vice. Voltage-gated ion channels in biological membranes share this charac-teristic of a memristor. In 1952, Hodgkin and Huxley (H-H) developed an electrical circuit model (HH model) to describe the time-dependent action potentials mediated by voltage-gated ion channels. We investigate the de-pendence of the action potential, including the onset of repeated spiking, on the applied current I, sodium and potassium channel conductance, and the membrane capacitance. We use a MATLAB code with the fourth-order Runge-Kutta method to solve the HH equations. Our results suggest that the memristive characteristics of the ion channels can be tuned over a wide range of parameters.

Description
poster abstract
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Qurat-ul-Ann Mirza and Yogesh Joglekar. (2012, April 13). HODGKIN-HUXLEY MODEL FOR ACTION POTENTIAL: MEMRISTIVE CHARACTERISTICS. Poster session presented at IUPUI Research Day 2012, Indianapolis, Indiana.
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Rights
Source
Alternative Title
Type
Poster
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}