- Browse by Subject
Browsing by Subject "MRI"
Now showing 1 - 10 of 72
Results Per Page
Sort Options
Item A Preliminary Study of Anatomical Changes Following the Use of a Pedicled Buccal Fat Pad Flap During Primary Palatoplasty(Sage, 2022-05) Kotlarek, Katelyn J.; Jaskolka, Michael S.; Fang, Xiangming; Ellis, Charles; Blemker, Silvia S.; Horswell, Bruce; Kloostra, Paul; Perry, Jamie L.; Oral Pathology, Medicine and Radiology, School of DentistryObjective: The purpose of this study was to examine the surgical impact of the pedicled BFP flap on the LVP muscle and surrounding VP anatomy following primary palatoplasty. Design: Observational, prospective Setting: MRI studies were completed at 3 imaging facilities. All participants with BFP flap were operated on by the same surgeon. Participants: Five pediatric participants with CP±L who underwent primary palatoplasty with BFP flap placement. Comparison groups consisted of 10 participants: 5 with CP±L who did not receive the BFP flap and 5 healthy controls. Interventions: All participants underwent nonsedated MRI 2–5 years postoperatively. Main Outcomes and Measures: Anatomical measures of the velopharynx and LVP among the 3 participant groups Results: Median values were significantly different among groups for velar length (p = .042), effective velar length (p = .048), effective VP ratio (p = .046), LVP length (p = .021), extravelar LVP length (p = .009), and LVP origin-origin distance (p = .030). Post hoc analysis revealed a statistically significant difference between the BFP and traditional repair groups for effective VP ratio (p = .040), extravelar LVP length (p = .033), and LVP length (p = .022). Conclusions: This study provides preliminary support that the BFP flap creates a longer velum, with increased distance between the posterior hard palate and the LVP, and a larger effective VP ratio compared to traditional surgical techniques. Future research is needed to determine if this procedure provides a more favorable mechanism for VP closure.Item A role for zinc transporter gene SLC39A12 in the nervous system and beyond(Elsevier, 2021) Davis, Danielle N.; Strong, Morgan D.; Chambers, Emily; Hart, Matthew D.; Bettaieb, Ahmed; Clarke, Stephen L.; Smith, Brenda J.; Stoecker, Barbara J.; Lucas, Edralin A.; Lin, Dingbo; Chowanadisai, Winyoo; Obstetrics and Gynecology, School of MedicineThe SLC39A12 gene encodes the zinc transporter protein ZIP12, which is expressed across many tissues and is highly abundant in the vertebrate nervous system. As a zinc transporter, ZIP12 functions to transport zinc across cellular membranes, including cellular zinc influx across the plasma membrane. Genome-wide association and exome sequencing studies have shown that brain susceptibility-weighted magnetic resonance imaging (MRI) intensity is associated with ZIP12 polymorphisms and rare mutations. ZIP12 is required for neural tube closure and embryonic development in Xenopus tropicalis. Frog embryos depleted of ZIP12 by antisense morpholinos develop an anterior neural tube defect and lack viability. ZIP12 is also necessary for neurite outgrowth and mitochondrial function in mouse neural cells. ZIP12 mRNA is increased in brain regions of schizophrenic patients. Outside of the nervous system, hypoxia induces ZIP12 expression in multiple mammalian species, including humans, which leads to endothelial and smooth muscle thickening in the lung and contributes towards pulmonary hypertension. Other studies have associated ZIP12 with other diseases such as cancer. Given that ZIP12 is highly expressed in the brain and that susceptibility-weighted MRI is associated with brain metal content, ZIP12 may affect neurological diseases and psychiatric illnesses such as Parkinson's disease, Alzheimer's disease, and schizophrenia. Furthermore, the induction of ZIP12 and resultant zinc uptake under pathophysiological conditions may be a critical component of disease pathology, such as in pulmonary hypertension. Drug compounds that bind metals like zinc may be able to treat diseases associated with impaired zinc homeostasis and altered ZIP12 function.Item Aducanumab: Appropriate Use Recommendations(Springer, 2021) Cummings, J.; Aisen, P.; Apostolova, L.G.; Atri, A.; Salloway, S.; Weiner, M.; Neurology, School of MedicineAducanumab has been approved by the US Food and Drug Administration for treatment of Alzheimer's disease (AD). Clinicians require guidance on the appropriate use of this new therapy. An Expert Panel was assembled to construct Appropriate Use Recommendations based on the participant populations, conduct of the pivotal trials of aducanumab, updated Prescribing Information, and expert consensus. Aducanumab is an amyloid-targeting monoclonal antibody delivered by monthly intravenous infusions. The pivotal trials included patients with early AD (mild cognitive impairment due to AD and mild AD dementia) who had confirmed brain amyloid using amyloid positron tomography. The Expert Panel recommends that use of aducanumab be restricted to this population in which efficacy and safety have been studied. Aducanumab is titrated to a dose of 10 mg/kg over a 6-month period. The Expert Panel recommends that the aducanumab be titrated to the highest dose to maximize the opportunity for efficacy. Aducanumab can substantially increase the incidence of amyloid-related imaging abnormalities (ARIA) with brain effusion or hemorrhage. Dose interruption or treatment discontinuation is recommended for symptomatic ARIA and for moderate-severe ARIA. The Expert Panel recommends MRIs prior to initiating therapy, during the titration of the drug, and at any time the patient has symptoms suggestive of ARIA. Recommendations are made for measures less cumbersome than those used in trials for the assessment of effectiveness in the practice setting. The Expert Panel emphasized the critical importance of engaging in a process of patient-centered informed decision-making that includes comprehensive discussions and clear communication with the patient and care partner regarding the requirements for therapy, the expected outcome of therapy, potential risks and side effects, and the required safety monitoring, as well as uncertainties regarding individual responses and benefits.Item Aducanumab: Appropriate Use Recommendations Update(Springer, 2022-04-05) Cummings, Jeffrey; Rabinovici, G. D.; Atri, A.; Aisen, P.; Apostolova, L. G.; Hendrix, S.; Sabbagh, M.; Selkoe, D.; Weiner, M.; Salloway, S.; Alzheimer’s Disease and Related Disorders Therapeutics Working Group; Neurology, School of MedicineAducanumab (Aduhelm) is approved in the United States for the treatment of patients with mild cognitive impairment due to Alzheimer’s disease or mild AD dementia. Aducanumab Appropriate Use Recommendations (AURs) have been published and have helped guide best practices for use of aducanumab. As real-world use has occurred and more information has accrued, the AURs require refinement. We update the AURs to better inform appropriate patient selection and improve shared decision-making, safety monitoring, and risk mitigation in treated patients. Based on evolving experience we emphasize the importance of detecting past medical conditions that may predispose to amyloid related imaging abnormalities (ARIA) or may increase the likelihood of ARIA complications including autoimmune or inflammatory conditions, seizures, or disorders associated with extensive white matter pathology. The apolipoprotein E ε4 (APOE4) genotype is strongly associated with ARIA and exhibits a gene dose effect. We recommend that clinicians perform APOE genotyping to better inform patient care decisions, discussions regarding risk, and clinician vigilance concerning ARIA. As most ARIA occurs during the titration period of aducanumab, we suggest performing MRI before the 5th, 7th, 9th, and 12th infusions to improve detection. Uncommonly, ARIA may be recurrent or serious; we suggest additional parameters for treatment discontinuation taking these observations into account. It is important to continue to learn from the real-world use of aducanumab and the AURs will continue to evolve as new information becomes available. This AUR update does not address efficacy, price, or insurance coverage and is provided to assist clinicians to establish best practices for use of aducanumab in the treatment of patients with mild cognitive impairment and mild Alzheimer’s dementia.Item Adults Are Not Big Children: What Brain Magnetic Resonance Imaging Findings Tell Us About Differences in Pediatric and Adult Cerebral Malaria(Oxford, 2020-12) John, Chandy C.; Pediatrics, School of MedicineItem Altered bile acid profile in mild cognitive impairment and Alzheimer's disease: Relationship to neuroimaging and CSF biomarkers(Elsevier, 2019-02) Nho, Kwangsik; Kueider-Paisley, Alexandra; MahmoudianDehkordi, Siamak; Arnold, Matthias; Risacher, Shannon L.; Louie, Gregory; Blach, Colette; Baillie, Rebecca; Han, Xianlin; Kastenmüller, Gabi; Jia, Wei; Xie, Guoxiang; Ahmad, Shahzad; Hankemeier, Thomas; van Duijn, Cornelia M.; Trojanowski, John Q.; Shaw, Leslie M.; Weiner, Michael W.; Doraiswamy, P. Murali; Saykin, Andrew J.; Kaddurah-Daouk, Rima; Radiology and Imaging Sciences, School of MedicineINTRODUCTION: Bile acids (BAs) are the end products of cholesterol metabolism produced by human and gut microbiome co-metabolism. Recent evidence suggests gut microbiota influence pathological features of Alzheimer's disease (AD) including neuroinflammation and amyloid-β deposition. METHOD: Serum levels of 20 primary and secondary BA metabolites from the AD Neuroimaging Initiative (n = 1562) were measured using targeted metabolomic profiling. We assessed the association of BAs with the "A/T/N" (amyloid, tau, and neurodegeneration) biomarkers for AD: cerebrospinal fluid (CSF) biomarkers, atrophy (magnetic resonance imaging), and brain glucose metabolism ([18F]FDG PET). RESULTS: Of 23 BAs and relevant calculated ratios after quality control procedures, three BA signatures were associated with CSF Aβ1-42 ("A") and three with CSF p-tau181 ("T") (corrected P < .05). Furthermore, three, twelve, and fourteen BA signatures were associated with CSF t-tau, glucose metabolism, and atrophy ("N"), respectively (corrected P < .05). DISCUSSION: This is the first study to show serum-based BA metabolites are associated with "A/T/N" AD biomarkers, providing further support for a role of BA pathways in AD pathophysiology. Prospective clinical observations and validation in model systems are needed to assess causality and specific mechanisms underlying this association.Item Altered cerebellar-cortical resting-state functional connectivity in cannabis users(Sage, 2021) Schnakenberg Martin, Ashley M.; Kim, Dae-Jin; Newman, Sharlene D.; Cheng, Hu; Hetrick, William P.; Mackie, Ken; O’Donnell, Brian F.; Psychiatry, School of MedicineBackground: Cannabis use has been associated with abnormalities in cerebellar mediated motor and non-motor (i.e. cognition and personality) phenomena. Since the cerebellum is a region with high cannabinoid type 1 receptor density, these impairments may reflect alterations of signaling between the cerebellum and other brain regions. Aims: We hypothesized that cerebellar-cortical resting-state functional connectivity (rsFC) would be altered in cannabis users, relative to their non-using peers. It was also hypothesized that differences in rsFC would be associated with cannabis use features, such as age of initiation and lifetime use. Methods: Cerebellar-cortical and subcortical rsFCs were computed between 28 cerebellar lobules, defined by a spatially unbiased atlas template of the cerebellum, and individual voxels in the cerebral regions, in 41 regular cannabis users (20 female) and healthy non-using peers (N = 31; 18 female). We also investigated associations between rsFC and cannabis use features (e.g. lifetime cannabis use and age of initiation). Results: Cannabis users demonstrated hyperconnectivity between the anterior cerebellar regions (i.e. lobule I-IV) with the posterior cingulate cortex, and hypoconnectivity between the rest of the cerebellum (i.e. Crus I and II, lobule VIIb, VIIIa, VIIIb, IX, and X) and the cortex. No associations were observed between features of cannabis use and rsFC. Conclusions: Cannabis use was associated with altered patterns of rsFC from the cerebellum to the cerebral cortex which may have a downstream impact on behavior and cognition.Item Application of 23Na MRI to Monitor Chemotherapeutic Response in RIF-1 Tumors(Elsevier, 2005-07) Babsky, Andriy M.; Hekmatyar, Shahryar K.; Zhang, Hong; Radiology and Imaging Sciences, School of MedicineEffects of an alkylating anticancer drug, cyclophosphamide (Cp), on 23Na signal intensity (23Na SI) and water apparent diffusion coefficient (ADC) were examined in subcutaneously - implanted radiation-induced fibrosarcoma (RIF-1) tumors by in vivo23Na and 1H magnetic resonance imaging (MRI). MRI experiments were performed on untreated control (n = 5) and Cp-treated (n = 6) C3H mice, once before Cp injection (300 mg/kg) then daily for 3 days after treatment. Tumor volumes were significantly lower in treated animals 2 and 3 days posttreatment. At the same time points, MRI experiments showed an increase in both 23Na SI and water ADC in treated tumors, whereas control tumors did not show any significant changes. The correlation between 23Na SI and water ADC changes was dramatically increased in the Cp-treated group, suggesting that the observed increases in 23Na SI and water ADC were caused by the same mechanism. Histologic sections showed decreased cell density in the regions of increased 23Na and water ADC SI. Destructive chemical analysis showed that Cp treatment increased the relative extracellular space and tumor [Na+]. We conclude that the changes in water ADC and 23Na SI were largely due to an increase in extracellular space. 23Na MRI and 1H water ADC measurements may provide valuable noninvasive techniques for monitoring chemotherapeutic responses.Item Assessing cortical bone porosity with MRI in an animal model of chronic kidney disease(Elsevier, 2023) Newman, Christopher L.; Surowiec, Rachel K.; Swallow, Elizabeth A.; Metzger, Corinne E.; Kim, Jieun; Tomaschke, Andrew A.; Chen, Neal X.; Allen, Matthew R.; Wallace, Joseph M.; Moe, Sharon M.; Wu, Yu-Chien; Niziolek, Paul J.; Radiology and Imaging Sciences, School of MedicineChronic kidney disease (CKD) is characterized by secondary hyperparathyroidism and an increased risk of hip fractures predominantly related to cortical porosity. Unfortunately, bone mineral density measurements and high-resolution peripheral computed tomography (HR-pQCT) imaging have shortcomings that limit their utility in these patients. Ultrashort echo time magnetic resonance imaging (UTE-MRI) has the potential to overcome these limitations by providing an alternative assessment of cortical porosity. The goal of the current study was to determine if UTE-MRI could detect changes in porosity in an established rat model of CKD. Cy/+ rats (n = 11), an established animal model of CKD-MBD, and their normal littermates (n = 12) were imaged using microcomputed tomography (microCT) and UTE-MRI at 30 and 35 weeks of age (which approximates late-stage kidney disease in humans). Images were obtained at the distal tibia and the proximal femur. Cortical porosity was assessed using the percent porosity (Pore%) calculated from microCT imaging and the porosity index (PI) calculated from UTE-MRI. Correlations between Pore% and PI were also calculated. Cy/+ rats had higher Pore% than normal rats at both skeletal sites at 35 weeks (tibia = 7.13 % +/- 5.59 % vs. 0.51 % +/- 0.09 %, femur = 19.99 % +/- 7.72 % vs. 2.72 % +/- 0.32 %). They also had greater PI at the distal tibia at 30 weeks of age (0.47 +/- 0.06 vs. 0.40 +/- 0.08). However, Pore% and PI were only correlated in the proximal femur at 35 weeks of age (ρ = 0.929, Spearman). These microCT results are consistent with prior studies in this animal model utilizing microCT imaging. The UTE-MRI results were inconsistent, resulting in variable correlations with microCT imaging, which may be related to suboptimal bound and pore water discrimination at higher magnetic field strengths. Nevertheless, UTE-MRI may still provide an additional clinical tool to assess fracture risk without using ionizing radiation in CKD patients.Item Association of Brain Volume and Retinal Thickness in the Early Stages of Alzheimer’s Disease(IOS Press, 2023) Mathew, Sunu; WuDunn, Darrell; Mackay, Devin D.; Vosmeier, Aaron; Tallman, Eileen F.; Deardorff, Rachael; Harris, Alon; Farlow, Martin R.; Brosch, Jared R.; Gao, Sujuan; Apostolova, Liana G.; Saykin, Andrew J.; Risacher, Shannon L.; Radiology and Imaging Sciences, School of MedicineBackground: The eye has been considered a 'window to the brain,' and several neurological diseases including neurodegenerative conditions like Alzheimer's disease (AD) also show changes in the retina. Objective: To investigate retinal nerve fiber layer (RNFL) thickness and its association with brain volume via magnetic resonance imaging (MRI) in older adults with subjective or objective cognitive decline. Methods: 75 participants underwent ophthalmological and neurological evaluation including optical coherence tomography and MRI (28 cognitively normal subjects, 26 with subjective cognitive decline, 17 patients diagnosed with mild cognitive impairment, and 4 with AD). Differences in demographics, thickness of RNFL, and brain volume were assessed using ANCOVA, while partial Pearson correlations, covaried for age and sex, were used to compare thickness of the peripapillary RNFL with brain volumes, with p < 0.05 considered statistically significant. Results: Mean RNFL thickness was significantly correlated with brain volumes, including global volume (right eye r = 0.235 p = 0.046, left eye r = 0.244, p = 0.037), temporal lobe (right eye r = 0.242 p = 0.039, left eye r = 0.290, p = 0.013), hippocampal (right eye r = 0.320 p = 0.005, left eye r = 0.306, p = 0.008), amygdala (left eye r = 0.332, p = 0.004), and occipital lobe (right eye r = 0.264 p = 0.024) volumes. Conclusion: RNFL thickness in both eyes was positively associated with brain volumes in subjects with subjective and objective cognitive decline. The RNFL, however, did not correlate with the disease, but the small sample number makes it important to conduct larger studies. RNFL thickness may be a useful non-invasive and inexpensive tool for detection of brain neurodegeneration and may assist with diagnosis and monitoring of progression and treatment in AD.