ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Lindblad dynamics"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Floquet exceptional contours in Lindblad dynamics with time-periodic drive and dissipation
    (American Physical Society (APS), 2021-02-22) Gunderson, John; Muldoon, Jacob; Murch, Kater W.; Joglekar, Yogesh N.; Physics, School of Science
    The dynamics of an isolated quantum system is coherent and unitary. Weak coupling to the environment leads to decoherence, which is traditionally modeled with a Lindblad equation for the system's density matrix. Starting from a pure state, such a system approaches a steady state (mixed or otherwise) in an underdamped or overdamped manner. This transition occurs at an eigenvalue degeneracy of a Lindblad superoperator, called an exceptional point (EP), where corresponding eigenvectors coalesce. Recent years have seen an explosion of interest in creating exceptional points in a truly quantum domain, driven by the enhanced sensitivity and topological features EPs have shown in their classical realizations. Here, we present Floquet analysis of a prototypical qubit whose drive or dissipator strengths are varied periodically. We consider models with a single dissipator that generate global loss (phase damping) or mode-selective loss (spontaneous emission). In all cases, we find that periodic modulations lead to EP lines at small dissipator strengths and a rich EP structure in the parameter space. Our analytical and numerical results show that extending Lindblad Liouvillians to the Floquet domain is a potentially preferred route to accessing exceptional points in the transient dynamics towards the Lindblad steady state.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University