- Browse by Subject
Browsing by Subject "Intravascular ultrasound"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Coronary Smooth Muscle Cell Cytodifferentiation and Intracellular Ca2+ Handling in Coronary Artery Disease(2019-08) Badin, Jill Kimberly; Sturek, Michael S.; Evans-Molina, Carmella; Moe, Sharon; Tune, Jonathan D.Metabolic syndrome (MetS) affects 1/3 of all Americans and is the clustering of three or more of the following cardiometabolic risk factors: obesity, hypertension, dyslipidemia, glucose intolerance, and insulin resistance. MetS drastically increases the incidence of coronary artery disease (CAD), which is the leading cause of mortality globally. A cornerstone of CAD is arterial remodeling associated with coronary smooth muscle (CSM) cytodifferentiation from a contractile phenotype to proliferative and osteogenic phenotypes. This cytodifferentiation is tightly coupled to changes in intracellular Ca2+ handling that regulate several key cellular functions, including contraction, transcription, proliferation, and migration. Our group has recently elucidated the time course of Ca2+ dysregulation during MetS-induced CAD development. Ca2+ transport mechanisms, including voltage-gated calcium channels, sarcoplasmic reticulum (SR) Ca2+ store, and sarco-endoplasmic reticulum Ca2+ ATPase (SERCA), are enhanced in early, mild disease and diminished in late, severe disease in the Ossabaw miniature swine. Using this well-characterized large animal model, I tested the hypothesis that this Ca2+ dysregulation pattern occurs in multiple etiologies of CAD, including diabetes and aging. The fluorescent intracellular Ca2+ ([Ca2+]i) indicator fura-2 was utilized to measure [Ca2+]i handling in CSM from lean and diseased swine. I found that [Ca2+]i handling is enhanced in mild disease with minimal CSM phenotypic switching and diminished in severe disease with greater phenotypic switching, regardless of CAD etiology. We are confident of the translatability of this research, as the Ca2+ influx, SR Ca2+ store, and SERCA functional changes in CSM of humans with CAD are similar to those found in Ossabaw swine with MetS. Single-cell RNA sequencing revealed that CSM cells from an organ culture model of CAD exhibited many different phenotypes, indicating that phenotypic modulation is not a discreet event, but a continuum. Transcriptomic analysis revealed differential expression of many genes that are involved in the osteogenic signaling pathway and in cellular inflammatory responses across phenotypes. These genes may be another regulatory mechanism common to the different CAD etiologies. This study is the first to show that CSM Ca2+ dysregulation is common among different CAD etiologies in a clinically relevant animal model.Item Effect of metabolic syndrome and aging on Ca2+ dysfunction in coronary smooth muscle and coronary artery disease severity in Ossabaw miniature swine(Elsevier, 2018-07-15) Badin, Jill K.; Bruning, Rebecca S.; Sturek, Michael; Cellular and Integrative Physiology, School of MedicineBACKGROUND: Metabolic syndrome (MetS) and aging are prevalent risk factors for coronary artery disease (CAD) and contribute to the etiology of CAD, including dysregulation of Ca2+ handling mechanisms in coronary smooth muscle (CSM). The current study tested the hypothesis that CAD severity and CSM Ca2+ dysregulation were different in MetS-induced CAD compared to aging-induced CAD. METHODS: Young (2.5 ± 0.2 years) and old (8.8 ± 1.2 years) Ossabaw miniature swine were fed an atherogenic diet for 11 months to induce MetS and were compared to lean age-matched controls. The metabolic profile was confirmed by body weight, plasma cholesterol and triglycerides, and intravenous glucose tolerance test. CAD was measured with intravascular ultrasound and histology. Intracellular Ca2+ ([Ca2+]i) was assessed with fura-2 imaging. RESULTS: CAD severity was similar between MetS young and lean old swine, with MetS old swine exhibiting the most severe CAD. Compared to CSM [Ca2+]i handling in lean young, the MetS young and lean old swine exhibited increased sarcoplasmic reticulum Ca2+ store release, increased Ca2+ influx through voltage-gated Ca2+ channels, and attenuated sarco-endoplasmic reticulum Ca2+ ATPase activity. MetS old and MetS young swine had similar Ca2+ dysregulation. CONCLUSIONS: Ca2+ dysregulation, mainly the SR Ca2+ store, in CSM is more pronounced in lean old swine, which is indicative of mild, proliferative CAD. MetS old and MetS young swine exhibit Ca2+ dysfunction that is typical of late, severe disease. The more advanced, complex plaques in MetS old swine suggest that the "aging milieu" potentiates effects of Ca2+ handling dysfunction in CAD.