Coronary Smooth Muscle Cell Cytodifferentiation and Intracellular Ca2+ Handling in Coronary Artery Disease

Date
2019-08
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
Ph.D.
Degree Year
2019
Department
Grantor
Indiana University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Metabolic syndrome (MetS) affects 1/3 of all Americans and is the clustering of three or more of the following cardiometabolic risk factors: obesity, hypertension, dyslipidemia, glucose intolerance, and insulin resistance. MetS drastically increases the incidence of coronary artery disease (CAD), which is the leading cause of mortality globally. A cornerstone of CAD is arterial remodeling associated with coronary smooth muscle (CSM) cytodifferentiation from a contractile phenotype to proliferative and osteogenic phenotypes. This cytodifferentiation is tightly coupled to changes in intracellular Ca2+ handling that regulate several key cellular functions, including contraction, transcription, proliferation, and migration. Our group has recently elucidated the time course of Ca2+ dysregulation during MetS-induced CAD development. Ca2+ transport mechanisms, including voltage-gated calcium channels, sarcoplasmic reticulum (SR) Ca2+ store, and sarco-endoplasmic reticulum Ca2+ ATPase (SERCA), are enhanced in early, mild disease and diminished in late, severe disease in the Ossabaw miniature swine. Using this well-characterized large animal model, I tested the hypothesis that this Ca2+ dysregulation pattern occurs in multiple etiologies of CAD, including diabetes and aging. The fluorescent intracellular Ca2+ ([Ca2+]i) indicator fura-2 was utilized to measure [Ca2+]i handling in CSM from lean and diseased swine. I found that [Ca2+]i handling is enhanced in mild disease with minimal CSM phenotypic switching and diminished in severe disease with greater phenotypic switching, regardless of CAD etiology. We are confident of the translatability of this research, as the Ca2+ influx, SR Ca2+ store, and SERCA functional changes in CSM of humans with CAD are similar to those found in Ossabaw swine with MetS. Single-cell RNA sequencing revealed that CSM cells from an organ culture model of CAD exhibited many different phenotypes, indicating that phenotypic modulation is not a discreet event, but a continuum. Transcriptomic analysis revealed differential expression of many genes that are involved in the osteogenic signaling pathway and in cellular inflammatory responses across phenotypes. These genes may be another regulatory mechanism common to the different CAD etiologies. This study is the first to show that CSM Ca2+ dysregulation is common among different CAD etiologies in a clinically relevant animal model.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Rights
Source
Alternative Title
Type
Dissertation
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}