- Browse by Subject
Browsing by Subject "Intestinal ischemia"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Hydrogen sulfide improves intestinal recovery following ischemia by endothelial nitric oxide-dependent mechanisms(American Physiological Society, 2017-05-01) Jensen, Amanda R.; Drucker, Natalie A.; Khaneki, Sina; Ferkowicz, Michael J.; Markel, Troy A.; Surgery, School of MedicineHydrogen sulfide (H2S) is an endogenous gasotransmitter that has vasodilatory properties. It may be a novel therapy for intestinal ischemia-reperfusion (I/R) injury. We hypothesized that 1) H2S would improve postischemic survival, mesenteric perfusion, mucosal injury, and inflammation compared with vehicle and 2) the benefits of H2S would be mediated through endothelial nitric oxide. C57BL/6J wild-type and endothelial nitric oxide synthase knockout (eNOS KO) mice were anesthetized, and a midline laparotomy was performed. Intestines were eviscerated, the small bowel mesenteric root identified, and baseline intestinal perfusion was determined using laser Doppler. Intestinal ischemia was established by temporarily occluding the superior mesenteric artery. Following ischemia, the clamp was removed, and the intestines were allowed to recover. Either sodium hydrosulfide (2 nmol/kg or 2 µmol/kg NaHS) in PBS vehicle or vehicle only was injected into the peritoneum. Animals were allowed to recover and were assessed for mesenteric perfusion, mucosal injury, and intestinal cytokines. P values < 0.05 were significant. H2S improved mesenteric perfusion and mucosal injury scores following I/R injury. However, in the setting of eNOS ablation, there was no improvement in these parameters with H2S therapy. Application of H2S also resulted in lower levels of intestinal cytokine production following I/R. Intraperitoneal H2S therapy can improve mesenteric perfusion, intestinal mucosal injury, and intestinal inflammation following I/R. The benefits of H2S appear to be mediated through endothelial nitric oxide-dependent pathways.NEW & NOTEWORTHY H2S is a gaseous mediator that acts as an anti-inflammatory agent contributing to gastrointestinal mucosal defense. It promotes vascular dilation, mucosal repair, and resolution of inflammation following intestinal ischemia and may be exploited as a novel therapeutic agent. It is unclear whether H2S works through nitric oxide-dependent pathways in the intestine. We appreciate that H2S was able to improve postischemic recovery of mesenteric perfusion, mucosal integrity, and inflammation. The beneficial effects of H2S appear to be mediated through endothelial nitric oxide-dependent pathways.Item Hydrogen sulfide therapy improves intestinal recovery through endothelial nitric oxide dependent mechanisms(2017) Jensen, Amanda; Markel, TroyH2S is a gaseous mediator that acts as an anti-inflammatory agent contributing to gastrointestinal mucosal defense. It promotes vascular dilation, mucosal repair, and resolution of inflammation following intestinal ischemia and may be exploited as a novel therapeutic agent. It is unclear if H2S works through nitric oxide-dependent pathways in the intestine. We appreciated that H2S was able to improve post-ischemic recovery of mesenteric perfusion, mucosal integrity, and inflammation. The beneficial effects of H2S appear to be mediated through endothelial nitric oxide-dependent pathways.Item Interleukin-6 Therapy Improves Intestinal Recovery Following Ischemia(Elsevier, 2019-07) te Winkel, Jan P.; Drucker, Natalie A.; Morocho, Bryant S.; Shelley, W. Christopher; Markel, Troy A.; Surgery, School of MedicineBackground: Interleukin-6 (IL6) has both proinflammatory and anti-inflammatory pathways, but its effects on intestinal recovery following ischemia are unknown. We hypothesized that administration of IL6 following intestinal ischemia would improve mesenteric perfusion and mucosal injury. Methods: Adult male C57Bl6J mice were anesthetized, and a laparotomy was performed. Baseline intestinal perfusion was assessed by laser Doppler imaging. Intestinal ischemia was induced for 60 min by temporarily occluding the superior mesenteric artery. After ischemia, treatments were administered intraperitoneally before closure (Vehicle: 250 μL phosphate-buffered-saline, IL6 low dose (20 ng), IL6 medium dose (200 ng), or IL6 high dose (2 μg)). Animals were allowed to recover for 24 h, were reanesthetized, and their mesenteric perfusion was reassessed. Perfusion was expressed as percentage of baseline. Animals were then sacrificed, and the intestines were explanted for histological analysis. Separate frozen samples were homogenized and analyzed by ELISA for vascular endothelial growth factor (VEGF) and interferon gamma-induced protein 10. Results: IL6 increased mesenteric perfusion in low dose groups only, whereas it improved postischemic mucosal injury scores in both low and medium dose groups. No differences in perfusion or histology were seen when high dose IL6 was utilized. Intestinal VEGF was higher in the low dose IL6 group compared to vehicle, whereas IP-10 levels were lower in low and medium dose groups compared to vehicle. No differences were noted compared to vehicle in intestinal VEGF and IP-10 with high dose IL6 therapy.Item The route and timing of hydrogen sulfide therapy critically impacts intestinal recovery following ischemia and reperfusion injury(Elsevier, 2018-06) Jensen, Amanda R.; Drucker, Natalie A.; te Winkel, Jan P.; Ferkowicz, Michael J.; Markel, Troy A.; Surgery, School of MedicinePURPOSE: Hydrogen sulfide (H2S) has many beneficial properties and may serve as a novel treatment in patients suffering from intestinal ischemia-reperfusion injury (I/R). The purpose of this study was to examine the method of delivery and timing of administration of H2S for intestinal therapy during ischemic injury. We hypothesized that 1) route of administration of hydrogen sulfide would impact intestinal recovery following acute mesenteric ischemia and 2) preischemic H2S conditioning using the optimal mode of administration as determined above would provide superior protection compared to postischemic application. METHODS: Male C57BL/6J mice underwent intestinal ischemia by temporary occlusion of the superior mesenteric artery. Following ischemia, animals were treated according to one of the following (N=6 per group): intraperitoneal or intravenous injection of GYY4137 (H2S-releasing donor, 50mg/kg in PBS), vehicle, inhalation of oxygen only, inhalation of 80ppm hydrogen sulfide gas. Following 24-h recovery, perfusion was assessed via laser Doppler imaging, and animals were euthanized. Perfusion and histology data were assessed, and terminal ileum samples were analyzed for cytokine production following ischemia. Once the optimal route of administration was determined, preischemic conditioning with H2S was undertaken using that route of administration. All data were analyzed using Mann-Whitney. P-values <0.05 were significant. RESULTS: Mesenteric perfusion following intestinal I/R was superior in mice treated with intraperitoneal (IP) GYY4137 (IP vehicle: 25.6±6.0 vs. IP GYY4137: 79.7±15.1; p=0.02) or intravenous (IV) GYY4137 (IV vehicle: 36.3±5.9 vs. IV GYY4137: 100.7±34.0; p=0.03). This benefit was not observed with inhaled H2S gas (O2 vehicle: 66.6±11.4 vs. H2S gas: 81.8±6.0; p=0.31). However, histological architecture was only preserved with intraperitoneal administration of GYY4127 (IP vehicle: 3.4±0.4 vs. IP GYY4137: 2±0.3; p=0.02). Additionally, IP GYY4137 allowed for significant attenuation of inflammatory chemokine production of IL-6, IP-10 and MIP-2. We then analyzed whether there was a difference between pre- and postischemic administration of IP GYY4137. We found that preconditioning of animals with intraperitoneal GYY4137 only added minor improvements in outcomes compared to postischemic application. CONCLUSION: Therapeutic benefits of H2S are superior with intraperitoneal application of an H2S donor compared to other administration routes. Additionally, while intraperitoneal treatment in both the pre- and postischemic period is beneficial, preischemic application of an H2S donor was found to be slightly better. Further studies are needed to examine long term outcomes and further mechanisms of action prior to widespread clinical application. TYPE OF STUDY: Basic science. LEVEL OF EVIDENCE: N/A.Item Sildenafil as a Rescue Agent Following Intestinal Ischemia and Reperfusion Injury(Elsevier, 2020-02) Moore, Hannah M.; Drucker, Natalie A.; Hosfield, Brian D.; Shelley, W. Chris; Markel, Troy A.; Surgery, School of MedicineBackground: Acute mesenteric ischemia carries a significant morbidity. Measures to improve blood flow parameters to the intestine may ameliorate the disease. Sildenafil, a phosphodiesterase 5 inhibitor, increases cyclic guanosine monophosphate and has been shown to prevent the effects of ischemia when given before injury. However, its effects as a rescue agent have not been established. We therefore hypothesized that sildenafil, when given as a rescue agent for intestinal ischemia, would improve mesenteric perfusion, limit intestinal epithelial injury, and decrease intestinal leukocyte chemoattractants. Methods: Eight to 12 wk-old-male C57BL/6J mice underwent laparotomy and temporary occlusion of the superior mesenteric artery for 60 min. Following ischemia, reperfusion was permitted, and before closing the abdomen, sildenafil was injected intraperitoneally in a variety of concentrations. After 24 h, reperfusion was reassessed. Animals were euthanized and intestines evaluated for histologic injury and leukocyte chemoattractants. Results: Postischemic administration of sildenafil did not improve mesenteric perfusion following intestinal ischemia and reperfusion injury. However, sildenafil did improve histologic injury scores in dose ranges of 0.01 to 10 mg/kg. No difference was noted in histological injury with 100 mg/kg dose, and all members of the 1000 mg/kg group died within 24 h of injury. Epithelial protection was not facilitated by the leukocyte chemoattractants Regulated on Activation, Normal T Cell Expressed, and Secreted, macrophage inflammatory protein 1 alpha, monocyte chemoattractant protein, neutrophil activating protein, or granulocyte colony stimulating factor. Conclusions: Administration of sildenafil following intestinal ischemia may limit intestinal mucosal injury but does not appear to alter mesenteric perfusion or leukocyte chemoattractant influx.