- Browse by Subject
Browsing by Subject "Information Extraction"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Bridging The Gap Between Healthcare Providers and Consumers: Extracting Features from Online Health Forum to Meet Social Needs of Patients using Network Analysis and Embedding(2020-08) Mokashi, Maitreyi; Chakraborty, Sunandan; Jones, Josette; Zheng, JiapingChronic disease patients have to face many issues during and after their treatment. A lot of these issues are either personal, professional, or social in nature. It may so happen that these issues are overlooked by the respective healthcare providers and become major obstacles in the patient’s day-to-day life and their disease management. We extract data from an online health platform that serves as a ‘safe haven’ to the patients and survivors to discuss help and coping issues. This thesis presents a novel approach that acts as the first step to include the social issues discussed by patients on online health forums which the healthcare providers need to consider in order to create holistic treatment plans. There are numerous online forums where patients share their experiences and post questions about their treatments and their subsequent side effects. We collected data from an “Online Breast Cancer Forum”. On this forum, users (patients) have created threads across many related topics and shared their experiences and questions. We connect the patients (users) with the topic in which they have posted by converting the data into a bipartite network and turn the network nodes into a high-dimensional feature space. From this feature space, we perform community detection on the node embeddings to unearth latent connections between patients and topics. We claim that these latent connections, along with the existing ones, will help to create a new knowledge base that will eventually help the healthcare providers to understand and acknowledge the non-medical related issues to a treatment, and create more adaptive and personalized plans. We performed both qualitative and quantitative analysis on the obtained embeddings to prove the superior quality of our approach and its potential to extract more information when compared to other models.Item An exploratory study using the predicate-argument structure to develop methodology for measuring semantic similarity of radiology sentences(2013-11-12) Newsom, Eric Tyner; Jones, Josette F.; Gamache, Roland E.; Mahoui, MalikaThe amount of information produced in the form of electronic free text in healthcare is increasing to levels incapable of being processed by humans for advancement of his/her professional practice. Information extraction (IE) is a sub-field of natural language processing with the goal of data reduction of unstructured free text. Pertinent to IE is an annotated corpus that frames how IE methods should create a logical expression necessary for processing meaning of text. Most annotation approaches seek to maximize meaning and knowledge by chunking sentences into phrases and mapping these phrases to a knowledge source to create a logical expression. However, these studies consistently have problems addressing semantics and none have addressed the issue of semantic similarity (or synonymy) to achieve data reduction. To achieve data reduction, a successful methodology for data reduction is dependent on a framework that can represent currently popular phrasal methods of IE but also fully represent the sentence. This study explores and reports on the benefits, problems, and requirements to using the predicate-argument statement (PAS) as the framework. A convenient sample from a prior study with ten synsets of 100 unique sentences from radiology reports deemed by domain experts to mean the same thing will be the text from which PAS structures are formed.Item Mining Biomedical Literature to Extract Pharmacokinetic Drug-Drug Interactions(2014-02-03) Karnik, Shreyas; Li, Lang; Liu, Yunlong; Liu, XiaowenPolypharmacy is a general clinical practice, there is a high chance that multiple administered drugs will interfere with each other, such phenomenon is called drug-drug interaction (DDI). DDI occurs when drugs administered change each other's pharmacokinetic (PK) or pharmacodynamic (PD) response. DDIs in many ways affect the overall effectiveness of the drug or at some times pose a risk of serious side effects to the patients thus, it becomes very challenging to for the successful drug development and clinical patient care. Biomedical literature is rich source for in-vitro and in-vivo DDI reports and there is growing need to automated methods to extract the DDI related information from unstructured text. In this work we present an ontology (PK ontology), which defines annotation guidelines for annotation of PK DDI studies. Using the ontology we have put together a corpora of PK DDI studies, which serves as excellent resource for training machine learning, based DDI extraction algorithms. Finally we demonstrate the use of PK ontology and corpora for extracting PK DDIs from biomedical literature using machine learning algorithms.