An exploratory study using the predicate-argument structure to develop methodology for measuring semantic similarity of radiology sentences

If you need an accessible version of this item, please submit a remediation request.
Date
2013-11-12
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
M.S.
Degree Year
2013
Department
School of Informatics
Grantor
Indiana University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

The amount of information produced in the form of electronic free text in healthcare is increasing to levels incapable of being processed by humans for advancement of his/her professional practice. Information extraction (IE) is a sub-field of natural language processing with the goal of data reduction of unstructured free text. Pertinent to IE is an annotated corpus that frames how IE methods should create a logical expression necessary for processing meaning of text. Most annotation approaches seek to maximize meaning and knowledge by chunking sentences into phrases and mapping these phrases to a knowledge source to create a logical expression. However, these studies consistently have problems addressing semantics and none have addressed the issue of semantic similarity (or synonymy) to achieve data reduction. To achieve data reduction, a successful methodology for data reduction is dependent on a framework that can represent currently popular phrasal methods of IE but also fully represent the sentence. This study explores and reports on the benefits, problems, and requirements to using the predicate-argument statement (PAS) as the framework. A convenient sample from a prior study with ten synsets of 100 unique sentences from radiology reports deemed by domain experts to mean the same thing will be the text from which PAS structures are formed.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}