- Browse by Subject
Browsing by Subject "Histones"
Now showing 1 - 10 of 17
Results Per Page
Sort Options
Item A decade of epigenetic research in Toxoplasma gondii(Elsevier, 2010) Dixon, Stacy E.; Stilger, Krista L.; Elias, Eliana V.; Naguleswaran, Arunasalam; Sullivan, William J., Jr.; Pharmacology and Toxicology, School of MedicineIn the past 10 years, the field of parasitology has witnessed an explosion of studies investigating gene regulation. In this review, we will describe recent advances largely stemming from the study of Toxoplasma gondii, a significant opportunistic pathogen and useful model for other apicomplexan protozoa. Surprising findings have emerged, including the discovery of a wealth of epigenetic machinery in these primitive eukaryotes, unusual histone variants, and a battery of plant-like transcription factors. We will elaborate on how these unusual features impact parasite physiology and potential therapeutics as we summarize some of the key discoveries from the last decade. We will close by proposing a few questions to address in the next 10 years.Item Analysis of differentiation capacity of Cfp1 null embyronic stem cells(2014) Bowen, Tamara R.; Skalnik, David Gordon; Marrs, James; Chang, Hua-ChenEpigenetics is defined as “the study of stable, often heritable, changes that influence gene expression that are not mediated by DNA sequence” (Fingerman et al., 2013). Epigenetic marks such as covalent histone modifications and DNA methylation are important for maintaining chromatin structure and epigenetic inheritance. Several proteins have been found to bind and/ or regulate epigenetic marks. One such protein, CXXC finger protein 1 (Cfp1) is an important chromatin regulator that binds to unmethylated CpG islands. It has been found to be essential for mammalian development. Mice lacking Cfp1 exhibit an embryonic- lethal phenotype. However, the function of Cfp1 can be studied using Cfp1 Null mouse ES cells, which are viable. Thus far, Cfp1 has been shown to be important for cell growth, cytosine methylation, histone modifications, subnuclear localization of Set1A histone H3K4 methyltransferase, and cellular differentiation. When Cfp1 Null ES cells are induced to differentiate by removal of Leukemia Inhibitory Factor (LIF), the cells are not able to turn off pluripotency markers such as Oct4 and alkaline phosphatase and fail to express differentiation markers such as Gata4 and Brachyury. In this study, we used established protocols to further examine the differentiation capacity of Cfp1 Null cells. Specifically, we tested the ability of Cfp1 Null ES cells to retain stem cell properties in the absence of LIF, differentiate into cardiomyocytes in the presence of TGF-β2 and differentiate into neuron precursors in the presence of retinoic acid (RA). While the differentiation effects of RA were inconclusive, Null cells were able to start differentiating in the absence of LIF, either as individual cells or EBs, and the presence of TGF-β2 when seeded on gelatin coated tissue culture dishes. However, no difference was seen between cells treated without LIF and those treated with TGF-β2. In both conditions, only a small portion of cells were able to differentiate, while the majority of the cell population retained stem cell characteristics. Cell growth and the differentiation capacity of Cfp1 Null cells were also compromised in comparison to WT cells. Thus, further supporting the need for the correct epigenetic patterns maintained by Cfp1 during cellular differentiation.Item Analysis of Histone Lysine Methylation Using Mass Spectrometry(2012-12-11) True, Jason Donald; Goebl, Mark G.; Mosley, Amber L.; Witzmann, F. A. (Frank A.)Histones are highly basic proteins which when digested by trypsin are hard to analyze using mass spectrometry. Because histones are basic nuclear proteins, a nuclei prep followed by acid extraction is the best purification strategy to increase overall abundance of purified histones. Blocking the lysine residues and cleaving with trypsin is a useful technique to increase detection of histone peptides using MudPIT. In particular, carbamylation and propionylation are the best two methods to block lysine residues. Using both propionylation and carbamylation along with no treatment has been shown to increase the identification of unmodified and modified histone peptides when coupled with MudPIT analysis.Item Canonical and variant histones of protozoan parasites(IMR Press, 2011-06-01) Dalmasso, Maria Carolina; Sullivan, William Joseph, Jr.; Angel, Sergio Oscar; Pharmacology and Toxicology, School of MedicineProtozoan parasites have tremendously diverse lifestyles that require adaptation to a remarkable assortment of different environmental conditions. In order to complete their life cycles, protozoan parasites rely on fine-tuning gene expression. In general, protozoa use novel regulatory elements, transcription factors, and epigenetic mechanisms to regulate their transcriptomes. One of the most surprising findings includes the nature of their histones--these primitive eukaryotes lack some histones yet harbor novel histone variants of unknown function. In this review, we describe the histone components of different protozoan parasites based on literature and database searching. We summarize the key discoveries regarding histones and histone variants and their impact on chromatin regulation in protozoan parasites. In addition, we list histone genes IDs, sequences, and genomic localization of several protozoan parasites and Microsporidia histones, obtained from a thorough search of genome databases. We then compare these findings with those observed in higher eukaryotes, allowing us to highlight some novel aspects of epigenetic regulation in protists and to propose questions to be addressed in the upcoming years.Item Functions of the Unique N-terminus of a GCN5 Histone Acetylase in Toxoplasma gondii(2007-05-18T13:14:16Z) Bhatti, Micah M.; Sullivan, William J., Jr.; Chan, Edward M.; Queener, Sherry F.; Safa, Ahmad R.; Sinai, Anthony P.; Vasko, Michael, R.GCN5 is a histone acetyltransferase (HAT) that remodels chromatin by acetylating lysine residues of histones. The GCN5 HAT identified in Toxoplasma gondii (TgGCN5) contains a unique N-terminal “extension” that bears no similarity to known proteins and is devoid of known protein motifs. The hypothesis of this thesis is the N-terminal extension is critical to the function of TgGCN5. Three possible roles of the N-terminus were investigated: nuclear localization, protein-protein interactions, and substrate recognition. Subcellular localization was determined via immunocytochemistry using parasites expressing recombinant forms of TgGCN5 fused to a FLAG tag. Initial studies performed with parasites expressing full length FLAG-TgGCN5 were positive for nuclear localization. Without the N-terminal extension (FLAG-ΔNT-TgGCN5) the protein remains cytoplasmic. Additional studies mapped a six amino acid motif (RKRVKR) as the nuclear localization signal (NLS). When RKRVKR is fused to a cytoplasmic protein, it gains access to the nucleus. Furthermore, we have established the NLS interacts with Toxoplasma importin α, a protein involved in nuclear trafficking. Interaction with importin α provides evidence that the TgGCN5 N-terminal extension is involved in mediating protein-protein interactions. In order to identify additional interacting proteins, FLAG affinity purification was performed on parasites expressing full length FLAG-TgGCN5 and FLAG-ΔNT-TgGCN5. Upon comparing the results of the two purifications, proteins captured with only full length TgGCN5 may be interacting with the N-terminal extension. Full length TgGCN5 affinity purification indicates an interaction with histone proteins, two different homologues of Ada2 (adapter protein reported to interact with GCN5 homologues), and several heat shock proteins. With regard to substrate recognition, the N-terminal extension of TgGCN5 is dispensable for the acetylation of non-nucleosomal histones in vitro. However, the lysine acetylated by TgGCN5 is surprisingly unique. Other GCN5 homologues preferentially acetylate lysine 14 in histone H3, but TgGCN5 exclusively acetylates lysine 18 in histone H3 and has no activity on lysine 14. Taken together, these results argue that the N-terminal extension of TgGCN5 is critical for mediating protein-protein interactions, including those responsible for trafficking the HAT to the parasite nucleus but does not appear to be required for the acetylation of non-nucleosomal histones.Item Genome-wide localization of histone variants in Toxoplasma gondii implicates variant exchange in stage-specific gene expression(BMC, 2022-02-14) Nardelli, Sheila C.; Silmon de Monerri, Natalie C.; Vanagas, Laura; Wang, Xiaonan; Tampaki, Zoi; Sullivan, William J., Jr.; Angel, Sergio O.; Kim, Kami; Pharmacology and Toxicology, School of MedicineBackground: Toxoplasma gondii is a protozoan parasite that differentiates from acute tachyzoite stages to latent bradyzoite forms in response to environmental cues that modify the epigenome. We studied the distribution of the histone variants CenH3, H3.3, H2A.X, H2A.Z and H2B.Z, by genome-wide chromatin immunoprecipitation to understand the role of variant histones in developmental transitions of T. gondii parasites. Results: H3.3 and H2A.X were detected in telomere and telomere associated sequences, whereas H3.3, H2A.X and CenH3 were enriched in centromeres. Histones H2A.Z and H2B.Z colocalize with the transcriptional activation mark H3K4me3 in promoter regions surrounding the nucleosome-free region upstream of the transcription start site. The H2B.Z/H2A.Z histone pair also localizes to the gene bodies of genes that are silent but poised for activation, including bradyzoite stage-specific genes. The majority of H2A.X and H2A.Z/H2B.Z loci do not overlap, consistent with variant histones demarcating specific functional regions of chromatin. The extent of enrichment of H2A.Z/H2B.Z (and H3.3 and H2A.X) within the entire gene (5'UTR and gene body) reflects the timing of gene expression during the cell cycle, suggesting that dynamic turnover of H2B.Z/H2A.Z occurs during the tachyzoite cell cycle. Thus, the distribution of the variant histone H2A.Z/H2B.Z dimer defines active and developmentally silenced regions of the T. gondii epigenome including genes that are poised for expression. Conclusions: Histone variants mark functional regions of parasite genomes with the dynamic placement of the H2A.Z/H2B.Z dimer implicated as an evolutionarily conserved regulator of parasite and eukaryotic differentiation.Item Hepatitis B virus X protein counteracts high mobility group box 1 protein-mediated epigenetic silencing of covalently closed circular DNA(PLOS, 2022-06-09) Kim, Elena S.; Zhou, Jun; Zhang, Hu; Marchetti, Alexander; van de Klundert, Maarten; Cai, Dawei; Yu, Xiaoyang; Mitra, Bidisha; Liu, Yuanjie; Wang, Mu; Protzer, Ulrike; Guo, Haitao; Microbiology and Immunology, School of MedicineHepatitis B virus (HBV) covalently closed circular DNA (cccDNA), serving as the viral persistence form and transcription template of HBV infection, hijacks host histone and non-histone proteins to form a minichromosome and utilizes posttranslational modifications (PTMs) "histone code" for its transcriptional regulation. HBV X protein (HBx) is known as a cccDNA transcription activator. In this study we established a dual system of the inducible reporter cell lines modelling infection with wildtype (wt) and HBx-null HBV, both secreting HA-tagged HBeAg as a semi-quantitative marker for cccDNA transcription. The cccDNA-bound histone PTM profiling of wt and HBx-null systems, using chromatin immunoprecipitation coupled with quantitative PCR (ChIP-qPCR), confirmed that HBx is essential for maintenance of cccDNA at transcriptionally active state, characterized by active histone PTM markers. Differential proteomics analysis of cccDNA minichromosome established in wt and HBx-null HBV cell lines revealed group-specific hits. One of the hits in HBx-deficient condition was a non-histone host DNA-binding protein high mobility group box 1 (HMGB1). Its elevated association to HBx-null cccDNA was validated by ChIP-qPCR assay in both the HBV stable cell lines and infection systems in vitro. Furthermore, experimental downregulation of HMGB1 in HBx-null HBV inducible and infection models resulted in transcriptional re-activation of the cccDNA minichromosome, accompanied by a switch of the cccDNA-associated histones to euchromatic state with activating histone PTMs landscape and subsequent upregulation of cccDNA transcription. Mechanistically, HBx interacts with HMGB1 and prevents its binding to cccDNA without affecting the steady state level of HMGB1. Taken together, our results suggest that HMGB1 is a novel host restriction factor of HBV cccDNA with epigenetic silencing mechanism, which can be counteracted by viral transcription activator HBx.Item Identification of ultramodified proteins using top-down tandem mass spectra(American Chemical Society, 2013-12-06) Liu, Xiaowen; Hengel, Shawna; Wu, Si; Tolić, Nikola; Pasa-Tolić, Ljiljana; Pevzner, Pavel A.; Department of BioHealth Informatics, IU School of Informatics and ComputingPost-translational modifications (PTMs) play an important role in various biological processes through changing protein structure and function. Some ultramodified proteins (like histones) have multiple PTMs forming PTM patterns that define the functionality of a protein. While bottom-up mass spectrometry (MS) has been successful in identifying individual PTMs within short peptides, it is unable to identify PTM patterns spreading along entire proteins in a coordinated fashion. In contrast, top-down MS analyzes intact proteins and reveals PTM patterns along the entire proteins. However, while recent advances in instrumentation have made top-down MS accessible to many laboratories, most computational tools for top-down MS focus on proteins with few PTMs and are unable to identify complex PTM patterns. We propose a new algorithm, MS-Align-E, that identifies both expected and unexpected PTMs in ultramodified proteins. We demonstrate that MS-Align-E identifies many proteoforms of histone H4 and benchmark it against the currently accepted software tools.Item Lysine acetyltransferase Gcn5-B regulates the expression of crucial genes in Toxoplasma and its function is regulated through lysine acetylation(2014-04-02) Wang, Jiachen; Sullivan, William J., Jr.; Queener, Sherry F.; Arrizabalaga, Gustavo; Nass, Richard M.; Lu, TaoHistone acetylation has been linked to developmental changes in gene expression and is a validated drug target of apicomplexan parasites, but little is known about the roles of individual histone modifying enzymes and how they are recruited to target genes. The protozoan parasite Toxoplasma gondii (phylum Apicomplexa) is unusual among invertebrates in possessing two GCN5-family lysine acetyltransferases (KATs). While GCN5a is required for gene expression in response to alkaline stress, this KAT is dispensable for parasite proliferation in normal culture conditions. In contrast, GCN5b cannot be disrupted, suggesting it is essential for Toxoplasma viability. To further explore the function of GCN5b, we generated clonal parasites expressing an inducible HA-tagged form of GCN5b containing a point mutation that ablates enzymatic activity (E703G). Stabilization of this dominant-negative form of GCN5b was mediated through ligand-binding to a destabilization domain (dd) fused to the protein. Induced accumulation of the ddHAGCN5b(E703G) protein led to a rapid arrest in parasite replication. Growth arrest was accompanied by a decrease in histone H3 acetylation at specific lysine residues as well as reduced expression of GCN5b target genes in GCN5b(E703G) parasites, which were identified using chromatin immunoprecipitation coupled with microarray hybridization (ChIP-chip). We also demonstrate that GCN5b interacts with AP2-domain proteins, which are plant-like transcription factors in Apicomplexa. The interactions between GCN5b, AP2IX-7, and AP2X-8 were confirmed by reciprocal co-immunoprecipitation and revealed a “core complex” that includes the co-activator ADA2-A, TFIID subunits, LEO1 polymerase-associated factor (Paf1) subunit, and RRM proteins. The dominant-negative phenotype of ddHAGCN5b(E703G) parasites, considered with the proteomics and ChIP-chip data, indicate that GCN5b plays a central role in transcriptional and chromatin remodeling complexes. We conclude that GCN5b has a non-redundant and indispensable role in regulating gene expression required during the Toxoplasma lytic cycle.Item Lysine Acetyltransferase GCN5b Interacts with AP2 Factors and Is Required for Toxoplasma gondii Proliferation(Public Library of Science, 2014) Wang, Jiachen; Dixon, Stacy E.; Ting, Li-Min; Liu, Ting-Kai; Jeffers, Victoria; Croken, Matthew M.; Calloway, Myrasol; Cannella, Dominique; Hakimi, Mohamed Ali; Kim, Kami; Sullivan, William J., Jr.; Microbiology and Immunology, School of MedicineHistone acetylation has been linked to developmental changes in gene expression and is a validated drug target of apicomplexan parasites, but little is known about the roles of individual histone modifying enzymes and how they are recruited to target genes. The protozoan parasite Toxoplasma gondii (phylum Apicomplexa) is unusual among invertebrates in possessing two GCN5-family lysine acetyltransferases (KATs). While GCN5a is required for gene expression in response to alkaline stress, this KAT is dispensable for parasite proliferation in normal culture conditions. In contrast, GCN5b cannot be disrupted, suggesting it is essential for Toxoplasma viability. To further explore the function of GCN5b, we generated clonal parasites expressing an inducible HA-tagged dominant-negative form of GCN5b containing a point mutation that ablates enzymatic activity (E703G). Stabilization of this dominant-negative GCN5b was mediated through ligand-binding to a destabilization domain (dd) fused to the protein. Induced accumulation of the ddHAGCN5b(E703G) protein led to a rapid arrest in parasite replication. Growth arrest was accompanied by a decrease in histone H3 acetylation at specific lysine residues as well as reduced expression of GCN5b target genes in GCN5b(E703G) parasites, which were identified using chromatin immunoprecipitation coupled with microarray hybridization (ChIP-chip). Proteomics studies revealed that GCN5b interacts with AP2-domain proteins, apicomplexan plant-like transcription factors, as well as a "core complex" that includes the co-activator ADA2-A, TFIID subunits, LEO1 polymerase-associated factor (Paf1) subunit, and RRM proteins. The dominant-negative phenotype of ddHAGCN5b(E703G) parasites, considered with the proteomics and ChIP-chip data, indicate that GCN5b plays a central role in transcriptional and chromatin remodeling complexes. We conclude that GCN5b has a non-redundant and indispensable role in regulating gene expression required during the Toxoplasma lytic cycle.