Analysis of differentiation capacity of Cfp1 null embyronic stem cells

Date
2014
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
M.S.
Degree Year
2014
Department
Department of Biology
Grantor
Purdue University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Epigenetics is defined as “the study of stable, often heritable, changes that influence gene expression that are not mediated by DNA sequence” (Fingerman et al., 2013). Epigenetic marks such as covalent histone modifications and DNA methylation are important for maintaining chromatin structure and epigenetic inheritance. Several proteins have been found to bind and/ or regulate epigenetic marks. One such protein, CXXC finger protein 1 (Cfp1) is an important chromatin regulator that binds to unmethylated CpG islands. It has been found to be essential for mammalian development. Mice lacking Cfp1 exhibit an embryonic- lethal phenotype. However, the function of Cfp1 can be studied using Cfp1 Null mouse ES cells, which are viable. Thus far, Cfp1 has been shown to be important for cell growth, cytosine methylation, histone modifications, subnuclear localization of Set1A histone H3K4 methyltransferase, and cellular differentiation. When Cfp1 Null ES cells are induced to differentiate by removal of Leukemia Inhibitory Factor (LIF), the cells are not able to turn off pluripotency markers such as Oct4 and alkaline phosphatase and fail to express differentiation markers such as Gata4 and Brachyury. In this study, we used established protocols to further examine the differentiation capacity of Cfp1 Null cells. Specifically, we tested the ability of Cfp1 Null ES cells to retain stem cell properties in the absence of LIF, differentiate into cardiomyocytes in the presence of TGF-β2 and differentiate into neuron precursors in the presence of retinoic acid (RA). While the differentiation effects of RA were inconclusive, Null cells were able to start differentiating in the absence of LIF, either as individual cells or EBs, and the presence of TGF-β2 when seeded on gelatin coated tissue culture dishes. However, no difference was seen between cells treated without LIF and those treated with TGF-β2. In both conditions, only a small portion of cells were able to differentiate, while the majority of the cell population retained stem cell characteristics. Cell growth and the differentiation capacity of Cfp1 Null cells were also compromised in comparison to WT cells. Thus, further supporting the need for the correct epigenetic patterns maintained by Cfp1 during cellular differentiation.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Rights
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}