- Browse by Subject
Browsing by Subject "Heterogeneity"
Now showing 1 - 10 of 16
Results Per Page
Sort Options
Item A set of circulating microRNAs belonging to the 14q32 chromosome locus identifies two subgroups of individuals with recent-onset type 1 diabetes(Elsevier, 2024) Sebastiani, Guido; Grieco, Giuseppina Emanuela; Bruttini, Marco; Auddino, Stefano; Mori, Alessia; Toniolli, Mattia; Fignani, Daniela; Licata, Giada; Aiello, Elena; Nigi, Laura; Formichi, Caterina; Fernandez-Tajes, Juan; Pugliese, Alberto; Evans-Molina, Carmella; Overbergh, Lut; Tree, Timothy; Peakman, Mark; Mathieu, Chantal; Dotta, Francesco; INNODIA investigators; Pediatrics, School of MedicineCirculating microRNAs (miRNAs) are linked to the onset and progression of type 1 diabetes mellitus (T1DM), thus representing potential disease biomarkers. In this study, we employed a multiplatform sequencing approach to analyze circulating miRNAs in an extended cohort of prospectively evaluated recent-onset T1DM individuals from the INNODIA consortium. Our findings reveal that a set of miRNAs located within T1DM susceptibility chromosomal locus 14q32 distinguishes two subgroups of individuals. To validate our results, we conducted additional analyses on a second cohort of T1DM individuals, confirming the identification of these subgroups, which we have named cluster A and cluster B. Remarkably, cluster B T1DM individuals, who exhibit increased expression of a set of 14q32 miRNAs, show better glycemic control and display a different blood immunomics profile. Our findings suggest that this set of circulating miRNAs can identify two different T1DM subgroups with distinct blood immunomics at baseline and clinical outcomes during follow-up.Item Cell-Cell Communication Breakdown and Endothelial Dysfunction(Elsevier, 2020-04) Lee, Daniel D.; Schwarz, Margaret A.; Medicine, School of MedicineGuided by organ-specific signals in both development and disease response, the heterogeneous endothelial cell population is a dynamic member of the vasculature. Functioning as the gatekeeper to fluid, inflammatory cells, oxygen, and nutrients, endothelial cell communication with its local environment is critical. Impairment of endothelial cell-cell communication not only disrupts this signaling process, but also contributes to pathologic disease progression. Expanding our understanding of those processes that mediate endothelial cell-cell communication is an important step in the approach to treatment of disease processes.Item Cryptic resolution sites in the vector plasmid lead to the heterogeneities in the rAAV vectors(Wiley, 2023) Zhang, Junping; Chrzanowski, Matthew; Frabutt, Dylan A.; Lam, Anh K.; Mulcrone, Patrick L.; Li, Lei; Konkle, Barbara A.; Miao, Carol H.; Xiao, Weidong; Pediatrics, School of MedicineRecombinant adeno-associated virus (rAAV) vectors carry a cassette of interest retaining only the inverted terminal repeats (ITRs) from the wild-type virus. Conventional rAAV production primarily uses a vector plasmid as well as helper genes essential for AAV replication and packaging. Nevertheless, plasmid backbone related contaminants have been a major source of vector heterogeneity. The mechanism driving the contamination phenomenon has yet to be elucidated. Here we identified cryptic resolution sites in the plasmid backbone as a key source for producing snapback genomes, which leads to the increase of vector genome heterogeneity in encapsidated virions. By using a single ITR plasmid as a model molecule and mapping subgenomic particles, we found that there exist a few typical DNA break hotspots in the vector DNA plasmid backbone, for example, on the ampicillin DNA element, called aberrant rescue sites. DNA around these specific breakage sites may assume some typical secondary structures. Similar to normal AAV vectors, plasmid DNA with a single ITR was able to rescue and replicate efficiently. These subgenomic DNA species significantly compete for trans factors required for rAAV rescue, replication, and packaging. The replication of single ITR contaminants during AAV production is independent of size. Packaging of these species is greatly affected by its size. A single ITR and a cryptic resolution site in the plasmid work synergistically, likely causing a source of plasmid backbone contamination.Item Cytokine Interaction With Cancer-Associated Fibroblasts in Esophageal Cancer(Sage, 2022) Hassan, Md Sazzad; Cwidak, Nicholas; Awasthi, Niranjan; von Holzen, Urs; Surgery, School of MedicineEsophageal cancer (EC) is a highly aggressive cancer with poor outcomes under current treatment regimens. More recent findings suggest stroma elements, specifically cancer-associated fibroblasts (CAFs), play a role in disease occurrence and progression. Cancer-associated fibroblasts are largely the product of converted fibroblasts, but a variety of other local cell types including epithelial cells, endothelial cells, and mesenchymal cells have also been shown to transform to CAFs under the correct conditions. Cancer-associated fibroblasts primarily function in the communication between the tumor microenvironment and cancer cells via cytokine and chemokine secretions that accentuate immunosuppression and cancer growth. Cancer-associated fibroblasts also pose issues for EC treatment by contributing to resistance of current chemotherapeutics like cisplatin. Targeting this cell type directly proves difficult given the heterogeneity between CAFs subpopulations, but emerging research provides hope that treatment is on the horizon. This review aims to unravel some of the complexities surrounding CAFs' impact on EC growth and therapy.Item Differential patterns of gray matter volumes and associated gene expression profiles in cognitively-defined Alzheimer's disease subgroups(Elsevier, 2021) Groot, Colin; Grothe, Michel J.; Mukherjee, Shubhabrata; Jelistratova, Irina; Jansen, Iris; van Loenhoud, Anna Catharina; Risacher, Shannon L.; Saykin, Andrew J.; Mac Donald, Christine L.; Mez, Jesse; Trittschuh, Emily H.; Gryglewski, Gregor; Lanzenberger, Rupert; Pijnenburg, Yolande A.L.; Barkhof, Frederik; Scheltens, Philip; van der Flier, Wiesje M.; Crane, Paul K.; Ossenkoppele, Rik; Radiology and Imaging Sciences, School of MedicineThe clinical presentation of Alzheimer's disease (AD) varies widely across individuals but the neurobiological mechanisms underlying this heterogeneity are largely unknown. Here, we compared regional gray matter (GM) volumes and associated gene expression profiles between cognitively-defined subgroups of amyloid-β positive individuals clinically diagnosed with AD dementia (age: 66 ± 7, 47% male, MMSE: 21 ± 5). All participants underwent neuropsychological assessment with tests covering memory, executive-functioning, language and visuospatial-functioning domains. Subgroup classification was achieved using a psychometric framework that assesses which cognitive domain shows substantial relative impairment compared to the intra-individual average across domains, which yielded the following subgroups in our sample; AD-Memory (n = 41), AD-Executive (n = 117), AD-Language (n = 33), AD-Visuospatial (n = 171). We performed voxel-wise contrasts of GM volumes derived from 3Tesla structural MRI between subgroups and controls (n = 127, age 58 ± 9, 42% male, MMSE 29 ± 1), and observed that differences in regional GM volumes compared to controls closely matched the respective cognitive profiles. Specifically, we detected lower medial temporal lobe GM volumes in AD-Memory, lower fronto-parietal GM volumes in AD-Executive, asymmetric GM volumes in the temporal lobe (left < right) in AD-Language, and lower GM volumes in posterior areas in AD-Visuospatial. In order to examine possible biological drivers of these differences in regional GM volumes, we correlated subgroup-specific regional GM volumes to brain-wide gene expression profiles based on a stereotactic characterization of the transcriptional architecture of the human brain as provided by the Allen human brain atlas. Gene-set enrichment analyses revealed that variations in regional expression of genes involved in processes like mitochondrial respiration and metabolism of proteins were associated with patterns of regional GM volume across multiple subgroups. Other gene expression vs GM volume-associations were only detected in particular subgroups, e.g., genes involved in the cell cycle for AD-Memory, specific sets of genes related to protein metabolism in AD-Language, and genes associated with modification of gene expression in AD-Visuospatial. We conclude that cognitively-defined AD subgroups show neurobiological differences, and distinct biological pathways may be involved in the emergence of these differences.Item Differential trajectories of hypometabolism across cognitively-defined Alzheimer’s disease subgroups(Elsevier, 2021) Groot, Colin; Risacher, Shannon L.; Chen, J.Q. Alida; Dicks, Ellen; Saykin, Andrew J.; MacDonald, Christine L.; Mez, Jesse; Trittschuh, Emily H.; Mukherjee, Shubhabrata; Barkhof, Frederik; Scheltens, Philip; van der Flier, Wiesje M.; Ossenkoppele, Rik; Crane, Paul K.; Radiology and Imaging Sciences, School of MedicineDisentangling biologically distinct subgroups of Alzheimer's disease (AD) may facilitate a deeper understanding of the neurobiology underlying clinical heterogeneity. We employed longitudinal [18F]FDG-PET standardized uptake value ratios (SUVRs) to map hypometabolism across cognitively-defined AD subgroups. Participants were 384 amyloid-positive individuals with an AD dementia diagnosis from ADNI who had a total of 1028 FDG-scans (mean time between first and last scan: 1.6 ± 1.8 years). These participants were categorized into subgroups on the basis of substantial impairment at time of dementia diagnosis in a specific cognitive domain relative to the average across domains. This approach resulted in groups of AD-Memory (n = 135), AD-Executive (n = 8), AD-Language (n = 22), AD-Visuospatial (n = 44), AD-Multiple Domains (n = 15) and AD-No Domains (for whom no domain showed substantial relative impairment; n = 160). Voxelwise contrasts against controls revealed that all AD-subgroups showed progressive hypometabolism compared to controls across temporoparietal regions at time of AD diagnosis. Voxelwise and regions-of-interest (ROI)-based linear mixed model analyses revealed there were also subgroup-specific hypometabolism patterns and trajectories. The AD-Memory group had more pronounced hypometabolism compared to all other groups in the medial temporal lobe and posterior cingulate, and faster decline in metabolism in the medial temporal lobe compared to AD-Visuospatial. The AD-Language group had pronounced lateral temporal hypometabolism compared to all other groups, and the pattern of metabolism was also more asymmetrical (left < right) than all other groups. The AD-Visuospatial group had faster decline in metabolism in parietal regions compared to all other groups, as well as faster decline in the precuneus compared to AD-Memory and AD-No Domains. Taken together, in addition to a common pattern, cognitively-defined subgroups of people with AD dementia show subgroup-specific hypometabolism patterns, as well as differences in trajectories of metabolism over time. These findings provide support to the notion that cognitively-defined subgroups are biologically distinct.Item DNA damage reduces heterogeneity and coherence of chromatin motions(National Academy of Science, 2022) Locatelli, Maëlle; Lawrimore, Josh; Lin, Hua; Sanaullah, Sarvath; Seitz, Clayton; Segall, Dave; Kefer, Paul; Moreno, Naike Salvador; Lietz, Benton; Anderson, Rebecca; Holmes, Julia; Yuan, Chongli; Holzwarth, George; Bloom, Kerry S.; Liu, Jing; Bonin, Keith; Vidi, Pierre-Alexandre; Physics, School of ScienceChromatin motions depend on and may regulate genome functions, in particular the DNA damage response. In yeast, DNA double-strand breaks (DSBs) globally increase chromatin diffusion, whereas in higher eukaryotes the impact of DSBs on chromatin dynamics is more nuanced. We mapped the motions of chromatin microdomains in mammalian cells using diffractive optics and photoactivatable chromatin probes and found a high level of spatial heterogeneity. DNA damage reduces heterogeneity and imposes spatially defined shifts in motions: Distal to DNA breaks, chromatin motions are globally reduced, whereas chromatin retains higher mobility at break sites. These effects are driven by context-dependent changes in chromatin compaction. Photoactivated lattices of chromatin microdomains are ideal to quantify microscale coupling of chromatin motion. We measured correlation distances up to 2 µm in the cell nucleus, spanning chromosome territories, and speculate that this correlation distance between chromatin microdomains corresponds to the physical separation of A and B compartments identified in chromosome conformation capture experiments. After DNA damage, chromatin motions become less correlated, a phenomenon driven by phase separation at DSBs. Our data indicate tight spatial control of chromatin motions after genomic insults, which may facilitate repair at the break sites and prevent deleterious contacts of DSBs, thereby reducing the risk of genomic rearrangements.Item Flexible analysis of TSS mapping data and detection of TSS shifts with TSRexploreR(Oxford University Press, 2021-06) Policastro, Robert A.; McDonald, Daniel J.; Brendel, Volker P.; Zentner, Gabriel E.; Biology, School of ScienceHeterogeneity in transcription initiation has important consequences for transcript stability and translation, and shifts in transcription start site (TSS) usage are prevalent in various developmental, metabolic, and disease contexts. Accordingly, numerous methods for global TSS profiling have been developed, including most recently Survey of TRanscription Initiation at Promoter Elements with high-throughput sequencing (STRIPE-seq), a method to profile transcription start sites (TSSs) on a genome-wide scale with significant cost and time savings compared to previous methods. In anticipation of more widespread adoption of STRIPE-seq and related methods for construction of promoter atlases and studies of differential gene expression, we built TSRexploreR, an R package for end-to-end analysis of TSS mapping data. TSRexploreR provides functions for TSS and transcription start region (TSR) detection, normalization, correlation, visualization, and differential TSS/TSR analyses. TSRexploreR is highly interoperable, accepting the data structures of TSS and TSR sets generated by several existing tools for processing and alignment of TSS mapping data, such as CAGEr for Cap Analysis of Gene Expression (CAGE) data. Lastly, TSRexploreR implements a novel approach for the detection of shifts in TSS distribution.Item Glioblastoma heterogeneity at single cell resolution(Springer Nature, 2023) Eisenbarth, David; Wang, Y. Alan; Medicine, School of MedicineGlioblastoma (GBM) is one of the deadliest types of cancer and highly refractory to chemoradiation and immunotherapy. One of the main reasons for this resistance to therapy lies within the heterogeneity of the tumor and its associated microenvironment. The vast diversity of cell states, composition of cells, and phenotypical characteristics makes it difficult to accurately classify GBM into distinct subtypes and find effective therapies. The advancement of sequencing technologies in recent years has further corroborated the heterogeneity of GBM at the single cell level. Recent studies have only begun to elucidate the different cell states present in GBM and how they correlate with sensitivity to therapy. Furthermore, it has become clear that GBM heterogeneity not only depends on intrinsic factors but also strongly differs between new and recurrent GBM, and treatment naïve and experienced patients. Understanding and connecting the complex cellular network that underlies GBM heterogeneity will be indispensable in finding new ways to tackle this deadly disease. Here, we present an overview of the multiple layers of GBM heterogeneity and discuss novel findings in the age of single cell technologies.Item Incidence of cognitively defined late-onset Alzheimer's dementia subgroups from a prospective cohort study(Elsevier, 2017-12) Crane, Paul K.; Trittschuh, Emily; Mukherjee, Shubhabrata; Saykin, Andrew J.; Sanders, Elizabeth; Larson, Eric B.; McCurry, Susan M.; McCormick, Wayne; Bowen, James D.; Grabowski, Thomas; Moore, Mackenzie; Gross, Alden L.; Keene, Dirk; Bird, Thomas E.; Gibbons, Laura E.; Mez, Jesse; Radiology and Imaging Sciences, School of MedicineINTRODUCTION: There may be biologically relevant heterogeneity within typical late-onset Alzheimer's dementia. METHODS: We analyzed cognitive data from people with incident late-onset Alzheimer's dementia from a prospective cohort study. We determined individual averages across memory, visuospatial functioning, language, and executive functioning. We identified domains with substantial impairments relative to that average. We compared demographic, neuropathology, and genetic findings across groups defined by relative impairments. RESULTS: During 32,286 person-years of follow-up, 869 people developed Alzheimer's dementia. There were 393 (48%) with no domain with substantial relative impairments. Some participants had isolated relative impairments in memory (148, 18%), visuospatial functioning (117, 14%), language (71, 9%), and executive functioning (66, 8%). The group with isolated relative memory impairments had higher proportions with ≥ APOE ε4 allele, more extensive Alzheimer's-related neuropathology, and higher proportions with other Alzheimer's dementia genetic risk variants. DISCUSSION: A cognitive subgrouping strategy may identify biologically distinct subsets of people with Alzheimer's dementia.