- Browse by Subject
Browsing by Subject "Guanabenz"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item Efficacy of Guanabenz Combination Therapy against Chronic Toxoplasmosis across Multiple Mouse Strains(American Society for Microbiology, 2020-08-20) Martynowicz, Jennifer; Doggett, J. Stone; Sullivan, William J., Jr.; Microbiology and Immunology, School of MedicineToxoplasma gondii, an obligate intracellular parasite that can cause life-threatening acute disease, differentiates into a quiescent cyst stage to establish lifelong chronic infections in animal hosts, including humans. This tissue cyst reservoir, which can reactivate into an acute infection, is currently refractory to clinically available therapeutics. Recently, we and others have discovered drugs capable of significantly reducing the brain cyst burden in latently infected mice, but not to undetectable levels. In this study, we examined the use of novel combination therapies possessing multiple mechanisms of action in mouse models of latent toxoplasmosis. Our drug regimens included combinations of pyrimethamine, clindamycin, guanabenz, and endochin-like quinolones (ELQs) and were administered to two different mouse strains in an attempt to eradicate brain tissue cysts. We observed mouse strain-dependent effects with these drug treatments: pyrimethamine-guanabenz showed synergistic efficacy in C57BL/6 mice yet did not improve upon guanabenz monotherapy in BALB/c mice. Contrary to promising in vitro results demonstrating toxicity to bradyzoites, we observed an antagonistic effect between guanabenz and ELQ-334 in vivo While we were unable to completely eliminate the brain cyst burden, we found that a combination treatment with ELQ-334 and pyrimethamine impressively reduced the brain cyst burden by 95% in C57BL/6 mice, which approached the limit of detection. These analyses highlight the importance of evaluating anti-infective drugs in multiple mouse strains and will help inform further preclinical studies of cocktail therapies designed to treat chronic toxoplasmosis.Item Enhancement of osteoblastogenesis and suppression of osteoclastogenesis by inhibition of de-phosphorylation of eukaryotic translation initiation factor 2 alpha(Smart Science and Technology, LLC, 2015) Hamamura, Kazunori; Chen, Andy; Yokota, Hiroki; Department of Anatomy and Cell Biology, IU School of MedicineThe phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α) is activated in response to various stresses such as viral infection, nutrient deprivation, and stress to the endoplasmic reticulum. Severe stress to the endoplasmic reticulum, for instance, induces an apoptotic pathway, while mild stress, on the contrary, leads to a pro-survival pathway. Little has been known about the elaborate role of eIF2α phosphorylation in the development of bone-forming osteoblasts and bone-resorbing osteoclasts. Using salubrinal and guanabenz as inhibitors of the de-phosphorylation of eIF2α, we have recently reported that the phosphorylation of eIF2α significantly alters fates of both osteoblasts and osteoclasts. Based on our recent findings, we review in this research highlight the potential mechanisms of the enhancement of osteoblastogenesis and the suppression of osteoclastogenesis through the elevated level of phosphorylated eIF2α.Item Guanabenz Downregulates Inflammatory Responses via eIF2α Dependent and Independent Signaling(MDPI, 2016-05) Takigawa, Shinya; Chen, Andy; Nishimura, Akinobu; Liu, Shengzhi; Li, Bai-Yan; Sudo, Akihiro; Yokota, Hiroki; Hamamura, Kazunori; Department of Biomedical Engineering, School of Engineering and TechnologyIntegrated stress responses (ISR) may lead to cell death and tissue degeneration via eukaryotic translation initiation factor 2 α (eIF2α)-mediated signaling. Alleviating ISR by modulating eIF2α phosphorylation can reduce the symptoms associated with various diseases. Guanabenz is known to elevate the phosphorylation level of eIF2α and reduce pro-inflammatory responses. However, the mechanism of its action is not well understood. In this study, we investigated the signaling pathway through which guanabenz induces anti-inflammatory effects in immune cells, in particular macrophages. Genome-wide mRNA profiling followed by principal component analysis predicted that colony stimulating factor 2 (Csf2, or GM-CSF as granulocyte macrophage colony stimulating factor) is involved in the responses to guanabenz. A partial silencing of Csf2 or eIF2α by RNA interference revealed that Interleukin-6 (IL6), Csf2, and Cyclooxygenase-2 (Cox2) are downregulated by guanabenz-driven phosphorylation of eIF2α. Although expression of IL1β and Tumor Necrosis Factor-α (TNFα) was suppressed by guanabenz, their downregulation was not directly mediated by eIF2α signaling. Collectively, the result herein indicates that anti-inflammatory effects by guanabenz are mediated by not only eIF2α-dependent but also eIF2α-independent signaling.Item Guanabenz Reduces Hyperactivity and Neuroinflammation Caused by Latent Toxoplasmosis in Mice(2020-02) Martynowicz, Jennifer Marie; Sullivan, William J., Jr.; Arrizabalaga, Gustavo; Boehm II, Stephen L.; Gilk, Stacey D.; Spinola, Stanley M.Toxoplasma gondii is an intracellular parasite that causes persistent, lifelong infection in one-third of humans worldwide. The parasite converts from a lytic, actively replicating form (tachyzoite) into a latent tissue cyst form (bradyzoite) that evades host immunity and is impervious to current drugs. While acute infection can be life threatening to immunosuppressed individuals, chronic infection has been linked to behavioral changes in rodents and neurological disease in humans. Notably, chronic infection in mice leads to hyperactivity in an open field. Whether these behavioral changes are due to parasite manipulation of the host or the host response to infection remains an outstanding question. We have previously shown that the anti-hypertensive drug guanabenz reduces Toxoplasma cyst burden in the brains of BALB/c mice, providing a means to examine whether brain cyst depletion reverses behavioral changes. We used two mouse strains (BALB/c and C57BL/6) differing in their susceptibility to infection. Following drug treatment of chronically infected mice, locomotor activity in an open field was assessed. In both mouse strains, the increased hyperactivity seen during chronic infection returned to normal levels following guanabenz treatment. Guanabenz reduced brain cyst burden ~70% in BALB/c mice as expected, but it increased cyst burden 49% in C57BL/6 mice. Examination of the brains showed that guanabenz decreased inflammation and perivascular cuffing in both infected mouse strains. Our study shows for the first time that it is possible to reverse a key behavioral change associated with chronic Toxoplasma infection. Surprisingly, the rescue from parasite-induced hyperactivity correlates with a decrease in neuroinflammation instead of cyst counts, suggesting that some behavioral changes arise from host responses to infection rather than a parasite-driven process.Item Guanabenz repurposed as an antiparasitic with activity against acute and latent toxoplasmosis(American Society for Microbiology, 2015-11) Benmerzouga, Imaan; Checkley, Lisa A.; Ferdig, Michael T.; Arrizabalaga, Gustavo; Wek, Ronald C.; Sullivan, William J., Jr.; Department of Pharmacology and Toxicology, IU School of MedicineToxoplasma gondii is a protozoan parasite that persists as a chronic infection. Toxoplasma evades immunity by forming tissue cysts, which reactivate to cause life-threatening disease during immune suppression. There is an urgent need to identify drugs capable of targeting these latent tissue cysts, which tend to form in the brain. We previously showed that translational control is critical during infections with both replicative and latent forms of Toxoplasma. Here we report that guanabenz, an FDA-approved drug that interferes with translational control, has antiparasitic activity against replicative stages of Toxoplasma and the related apicomplexan parasite Plasmodium falciparum (a malaria agent). We also found that inhibition of translational control interfered with tissue cyst biology in vitro. Toxoplasma bradyzoites present in these abnormal cysts were diminished and misconfigured, surrounded by empty space not seen in normal cysts. These findings prompted analysis of the efficacy of guanabenz in vivo by using established mouse models of acute and chronic toxoplasmosis. In addition to protecting mice from lethal doses of Toxoplasma, guanabenz has a remarkable ability to reduce the number of brain cysts in chronically infected mice. Our findings suggest that guanabenz can be repurposed into an effective antiparasitic with a unique ability to reduce tissue cysts in the brain.Item Guanabenz Reverses a Key Behavioral Change Caused by Latent Toxoplasmosis in Mice by Reducing Neuroinflammation(American Society for Microbiology, 2019-04-30) Martynowicz, Jennifer; Augusto, Leonardo; Wek, Ronald C.; Boehm, Stephen L.; Sullivan, William J., Jr.; Microbiology and Immunology, School of MedicineToxoplasma gondii is an intracellular parasite that has infected one-third of humans. The infection is permanent because the replicative form (tachyzoite) converts into a latent tissue cyst form (bradyzoite) that evades host immunity and is impervious to current drugs. The continued presence of these parasitic cysts hinders treatment and leads to chronic infection that has been linked to behavioral changes in rodents and neurological disease in humans. How these behavioral changes occur, and whether they are due to parasite manipulation or the host response to infection, remains an outstanding question. We previously showed that guanabenz possesses antiparasitic activity; here, we show that guanabenz reproducibly lowers brain cyst burden up to 80% in chronically infected male and female BALB/cJ mice when given intraperitoneally but not when administered by gavage or in food. Regardless of the administration route, guanabenz reverses Toxoplasma-induced hyperactivity in latently infected mice. In contrast, guanabenz increases cyst burden when given to chronically infected C57BL/6J mice yet still reverses Toxoplasma-induced hyperactivity. Examination of the brains from chronically infected BALB/cJ and C57BL/6J mice shows that guanabenz decreases inflammation and perivascular cuffing in each strain. Our study establishes a robust model for cyst reduction in BALB/cJ mice and shows for the first time that it is possible to reverse a key behavioral change associated with latent toxoplasmosis. The rescue from parasite-induced hyperactivity correlates with a decrease in neuroinflammation rather than reduced cyst counts, suggesting that some behavioral changes arise from host responses to infection.IMPORTANCE Toxoplasma gondii is a common parasite of animals, including up to one-third of humans. The single-celled parasite persists within hosts for the duration of their life as tissue cysts, giving rise to chronic infection. Latent toxoplasmosis is correlated with neurological dysfunction in humans and results in dramatic behavioral changes in rodents. When infected, mice and rats adapt behaviors that make them more likely to be devoured by cats, the only host that supports the sexual stage of the parasite. In this study, we establish a new mouse model of tissue cyst depletion using a drug called guanabenz and show that it is possible to reverse a key behavior change back to normal in infected animals. We also show that the mechanism appears to have nothing to do with parasite cyst burden but rather the degree of neuroinflammation produced by chronic infection.Item Inhibitors of eIF2α Dephosphorylation Slow Replication and Stabilize Latency in Toxoplasma gondii(American Society for Microbiology, 2013) Konrad, Christian; Queener, Sherry F.; Wek, Ronald C.; Sullivan, William J., Jr.; Biochemistry and Molecular Biology, School of MedicineToxoplasma gondii is an obligate intracellular parasite that permanently infects warm-blooded vertebrates through its ability to convert into a latent tissue cyst form. The latent form (bradyzoite) can reinitiate a life-threatening acute infection if host immunity wanes, most commonly in AIDS or organ transplant patients. We have previously shown that bradyzoite development is accompanied by phosphorylation of the parasite eukaryotic initiation factor 2 alpha subunit (eIF2α), which dampens global protein synthesis and reprograms gene expression. In this study, we analyzed the activities of two specific inhibitors of eIF2α dephosphorylation, salubrinal (SAL) and guanabenz (GA). We establish that these drugs are able to inhibit the dephosphorylation of Toxoplasma eIF2α. Our results show that SAL and GA reduce tachyzoite replication in vitro and in vivo. Furthermore, both drugs induce bradyzoite formation and inhibit the reactivation of latent bradyzoites in vitro. To address whether the antiparasitic activities of SAL and GA involve host eIF2α phosphorylation, we infected mutant mouse embryonic fibroblast (MEF) cells incapable of phosphorylating eIF2α, which had no impact on the efficacies of SAL and GA against Toxoplasma infection. Our findings suggest that SAL and GA may serve as potential new drugs for the treatment of acute and chronic toxoplasmosis.Item Rebound of Cyst Number Following Discontinuation of Guanabenz Treatment for Latent Toxoplasmosis(Elsevier, 2021) Martynowicz, Jennifer; Sullivan, William J., Jr.; Microbiology and Immunology, School of MedicineToxoplasma gondii is a protozoan parasite that causes opportunistic infection in immunocompromised individuals. The parasite forms latent tissue cysts that are refractory to current treatments and give rise to life-threatening reactivated infection following immune suppression. Previously, we showed that guanabenz sharply reduces brain cyst count in BALB/c mice harboring latent toxoplasmosis; however, whether cyst count would change once drug treatment stopped was not addressed. In the present study, we observed a rebound in brain cysts following the discontinuation of guanabenz or a guanabenz-pyrimethamine combination therapy. The re-expansion of brain cysts was not accompanied by symptoms of acute toxoplasmosis. We also tested whether the rebound in cyst counts could be ameliorated by administering pyrimethamine during or after guanabenz treatment.