Guanabenz Reduces Hyperactivity and Neuroinflammation Caused by Latent Toxoplasmosis in Mice

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2020-02
Language
American English
Embargo Lift Date
Department
Degree
Ph.D.
Degree Year
2020
Department
Microbiology & Immunology
Grantor
Indiana University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Toxoplasma gondii is an intracellular parasite that causes persistent, lifelong infection in one-third of humans worldwide. The parasite converts from a lytic, actively replicating form (tachyzoite) into a latent tissue cyst form (bradyzoite) that evades host immunity and is impervious to current drugs. While acute infection can be life threatening to immunosuppressed individuals, chronic infection has been linked to behavioral changes in rodents and neurological disease in humans. Notably, chronic infection in mice leads to hyperactivity in an open field. Whether these behavioral changes are due to parasite manipulation of the host or the host response to infection remains an outstanding question. We have previously shown that the anti-hypertensive drug guanabenz reduces Toxoplasma cyst burden in the brains of BALB/c mice, providing a means to examine whether brain cyst depletion reverses behavioral changes. We used two mouse strains (BALB/c and C57BL/6) differing in their susceptibility to infection. Following drug treatment of chronically infected mice, locomotor activity in an open field was assessed. In both mouse strains, the increased hyperactivity seen during chronic infection returned to normal levels following guanabenz treatment. Guanabenz reduced brain cyst burden ~70% in BALB/c mice as expected, but it increased cyst burden 49% in C57BL/6 mice. Examination of the brains showed that guanabenz decreased inflammation and perivascular cuffing in both infected mouse strains. Our study shows for the first time that it is possible to reverse a key behavioral change associated with chronic Toxoplasma infection. Surprisingly, the rescue from parasite-induced hyperactivity correlates with a decrease in neuroinflammation instead of cyst counts, suggesting that some behavioral changes arise from host responses to infection rather than a parasite-driven process.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Dissertation
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}
2022-03-10