ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Gluconeogenesis"

Now showing 1 - 9 of 9
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    BMAL1 Overexpression in Suprachiasmatic Nucleus Protects from Retinal Neurovascular Deficits in Diabetes
    (bioRxiv, 2025-02-06) Mahajan, Neha; Luo, Qianyi; Lukkes, Jodi; Abhyankar, Surabhi D.; Bhatwadekar, Ashay D.; Ophthalmology, School of Medicine
    The suprachiasmatic nucleus (SCN) regulates circadian rhythms and influences physiological and behavioral processes. Disruptions in circadian rhythms (CRD) are observed in type 2 diabetes (T2D), and importantly, CRD acts as an independent risk factor for T2D and its associated complications. BMAL1, a circadian clock gene, is vital for sustaining an optimal circadian rhythm and physiological function. However, the therapeutic potential of BMAL1 overexpression in the SCN to rectify the neurovascular deficits of T2D has yet to be investigated. In this study, db/db mice, a well-established model of T2D exhibiting arrhythmic behavior and the complications of diabetes, were injected stereotaxically with AAV8-Bmal1 or a control virus in the SCN to evaluate the protective effects of correcting the central clock on neurovascular deficits. Given the complex neurovascular network and the eye's unique accessibility as a transparent system, ocular complications were selected as a model to examine the neuronal functional, behavioral, and vascular benefits of correcting the central clock. BMAL1 overexpression normalized the circadian rhythms, as demonstrated by improvements in the free-running period. The retinal neuronal function improved on electroretinogram, along with optomotor behavior and visual acuity enhancements. Retinal vascular deficits were also significantly reduced. Notably, our approach helped decrease fat content in genetically predisposed obese animals. Since the SCN is known to regulate hepatic glucose production via sympathetic mechanisms, glycemic control, and pyruvate tolerance tests were conducted. Systemically, we observed improved glucose homeostasis in BMAL1-overexpressing mice alongside a substantial reduction in hepatic gluconeogenesis. BMAL1 overexpression lowered plasma norepinephrine and liver TH levels, indicating a protective regulation of adrenergic signaling. Thus, this study underscores the therapeutic potential of targeting circadian clock genes like BMAL1 in the SCN to alleviate metabolic and neurovascular deficits associated with T2D. Our research offers a compelling framework for integrating circadian rhythms into managing diabetes and its complications.
  • Loading...
    Thumbnail Image
    Item
    Effects of adrenal cortical hormones on CO2 fixation and gluconeogenesis
    (1965) Songsawade, Chantima
  • Loading...
    Thumbnail Image
    Item
    Enhancement of the SESN2-SHP cascade by melatonin ameliorates hepatic gluconeogenesis by inhibiting the CRBN-BTG2-CREBH signaling pathway
    (Springer Nature, 2023) An, Seungwon; Nedumaran, Balachandar; Koh, Hong; Joo, Dong Jin; Lee, Hyungjo; Park, Chul-Seung; Harris, Robert A.; Shin, Keong Sub; Djalilian, Ali R.; Kim, Yong Deuk; Biochemistry and Molecular Biology, School of Medicine
    Melatonin is involved in the regulation of various biological functions. Here, we explored a novel molecular mechanism by which the melatonin-induced sestrin2 (SESN2)-small heterodimer partner (SHP) signaling pathway protects against fasting- and diabetes-mediated hepatic glucose metabolism. Various key gene expression analyses were performed and multiple metabolic changes were assessed in liver specimens and primary hepatocytes of mice and human participants. The expression of the hepatic cereblon (CRBN) and b-cell translocation gene 2 (BTG2) genes was significantly increased in fasting mice, diabetic mice, and patients with diabetes. Overexpression of Crbn and Btg2 increased hepatic gluconeogenesis by enhancing cyclic adenosine monophosphate (cAMP)-responsive element-binding protein H (CREBH), whereas this phenomenon was prominently ablated in Crbn null mice and Btg2-silenced mice. Interestingly, melatonin-induced SESN2 and SHP markedly reduced hepatic glucose metabolism in diabetic mice and primary hepatocytes, and this protective effect of melatonin was strikingly reversed by silencing Sesn2 and Shp. Finally, the melatonin-induced SESN2-SHP signaling pathway inhibited CRBN- and BTG2-mediated hepatic gluconeogenic gene transcription via the competition of BTG2 and the interaction of CREBH. Mitigation of the CRBN-BTG2-CREBH axis by the melatonin-SESN2-SHP signaling network may provide a novel therapeutic strategy to treat metabolic dysfunction due to diabetes.
  • Loading...
    Thumbnail Image
    Item
    The metabolic control of pyruvate dehydrogenase and its importance in the control of the synthetic processes of lipogenesis and gluconeogenesis
    (1975) Mapes, James Preston
  • Loading...
    Thumbnail Image
    Item
    Novel roles of sterol regulatory element-binding protein-1 in liver
    (2016-04-26) Jideonwo, Victoria N.; Morral, Núria; Considine, Robert V.; Elmendorf, Jeffrey S.; Hannon, Tamara; Herbert, Brittney-Shea
    Sterol Regulatory Element Binding Protein-1 (SREBP-1) is a conserved transcription factor of the basic helix-loop-helix leucine zipper family (bHLH-Zip) that primarily regulates glycolytic and lipogenic enzymes such as L-pyruvate kinase, acetyl-CoA carboxylase, fatty acid synthase, stearoyl-CoA desaturase 1, and mitochondrial glycerol-3-phosphate acyltransferase 1. SREBP-1c activity is higher in the liver of human obese patients, as well as ob/ob and db/db mouse models of obesity and type 2 diabetes, underscoring the role of this transcription factor as a contributor to hepatic steatosis and insulin resistance. Nonetheless, SREBP-1 deficient ob/ob mice, do not display improved glycemia despite a significant decrease in hepatic lipid accumulation, suggesting that SREBP-1 might play a role at regulating carbohydrate metabolism. By silencing SREBP-1 in the liver of normal and type 2 diabetes db/db mice, we showed that indeed, SREBP-1 is needed for appropriate regulation of glycogen synthesis and gluconeogenesis enzyme gene expression. Depleting SREBP-1 activity more than 90%, resulted in a significant loss of glycogen deposition and increased expression of Pck1 and G6pc. Hence, the benefits of reducing de novo lipogenesis in db/db mice were offset by the negative impact on gluconeogenesis and glycogen synthesis. Some studies had also indicated that SREBP-1 regulates the insulin signaling pathway, through regulation of IRS2 and a subunit of the PI3K complex, p55g. To gain insight on the consequences of silencing SREBP-1 on insulin sensitivity, we analyzed the insulin signaling and mTOR pathways, as both are interconnected through feedback mechanisms. These studies suggest that SREBP-1 regulates S6K1, a downstream effector of mTORC1, and a key molecule to activate the synthesis of protein. Furthermore, these analyses revealed that depletion of SREBP-1 leads to reduced insulin sensitivity. Overall, our data indicates that SREBP-1 regulates pathways important for the fed state, including lipogenesis, glycogen and protein synthesis, while inhibiting gluconeogenesis. Therefore, SREBP-1 coordinates multiple aspects of the anabolic response in response to nutrient abundance. These results are in agreement with emerging studies showing that SREBP-1 regulates a complex network of genes to coordinate metabolic responses needed for cell survival and growth, including fatty acid metabolism; phagocytosis and membrane biosynthesis; insulin signaling; and cell proliferation.
  • Loading...
    Thumbnail Image
    Item
    Regulation of glucose homeostasis by Doc2b and Munc18 proteins.
    (2014-01) Ramalingam, Latha; Thurmond, Debbie C.; Elmendorf, Jeffrey S.; Mirmira, Raghavendra G.; Roach, Peter J.
    Glucose homeostasis is maintained through the coordinated actions of insulin secretion from pancreatic beta cells and insulin action in peripheral tissues. Dysfunction of insulin action yields insulin resistance, and when coupled with altered insulin secretion, results in type 2 diabetes (T2D). Exocytosis of intracellular vesicles, such as insulin granules and glucose transporter (GLUT4) vesicles is carried out by similar SNARE (soluble NSF attachment receptor) protein isoforms and Munc18 proteins. An additional regulatory protein, Doc2b, was implicated in the regulation of these particular exocytosis events in clonal cell lines, but relevance of Doc2b in the maintenance of whole body glucose homeostasis in vivo remained unknown. The objective of my doctoral work was to delineate the mechanisms underlying regulation of insulin secretion and glucose uptake by Doc2b in effort to identify new therapeutic targets within these processes for the prevention and/or treatment of T2D. Towards this, mice deficient in Doc2b (Doc2b-/- knockout mice) were assessed for in vivo alterations in glucose homeostasis. Doc2b knockout mice were highly susceptible to preclinical T2D, exhibiting significant whole-body glucose intolerance related to insulin secretion insufficiency as well as peripheral insulin resistance. These phenotypic defects were accounted for by defects in assembly of SNARE complexes. Having determined that Doc2b was required in the control over whole body glycemia in vivo, whether Doc2b is also limiting for these mechanisms in vivo was examined. To study this, novel Doc2b transgenic (Tg) mice were engineered to express ~3 fold more Doc2b exclusively in pancreas, skeletal muscle and fat tissues. Compared to normal littermate mice, Doc2b Tg mice had improved glucose tolerance, related to concurrent enhancements in insulin mumsecretion from beta cells and insulin-stimulated glucose uptake in the skeletal muscle. At the molecular level, Doc2b overexpression promoted SNARE complex assembly, increasing exocytotic capacities in both cellular processes. These results unveiled the concept that intentional elevation of Doc2b could provide a means of mitigating two primary aberrations underlying T2D development.
  • Loading...
    Thumbnail Image
    Item
    SCP4: A Small Nuclear Phosphatase Having a Big Effect on FoxOs in Gluconeogenesis
    (American Diabetes Association, 2018-01) Dong, X. Charlie; Biochemistry and Molecular Biology, School of Medicine
  • Loading...
    Thumbnail Image
    Item
    Sterol regulatory element-binding protein-1 (SREBP-1) is required to regulate glycogen synthesis and gluconeogenic gene expression in mouse liver
    (ASBMB, 2014-01-07) Ruiz, Rafaela; Jideonwo, Victoria; Ahn, Miwon; Surendran, Sneha; Tagliabracci, Vincent S.; Hou, Yongyong; Gamble, Aisha; Kerner, Janos; Irimia-Dominguez, Jose M.; Puchowicz, Michelle A.; Hoppel, Charles; Roach, Peter; Morral, Nuria; Department of Medical & Molecular Genetics, IU School of Medicine
    Sterol regulatory element-binding protein-1 (SREBP-1) is a key transcription factor that regulates genes in the de novo lipogenesis and glycolysis pathways. The levels of SREBP-1 are significantly elevated in obese patients and in animal models of obesity and type 2 diabetes, and a vast number of studies have implicated this transcription factor as a contributor to hepatic lipid accumulation and insulin resistance. However, its role in regulating carbohydrate metabolism is poorly understood. Here we have addressed whether SREBP-1 is needed for regulating glucose homeostasis. Using RNAi and a new generation of adenoviral vector, we have silenced hepatic SREBP-1 in normal and obese mice. In normal animals, SREBP-1 deficiency increased Pck1 and reduced glycogen deposition during fed conditions, providing evidence that SREBP-1 is necessary to regulate carbohydrate metabolism during the fed state. Knocking SREBP-1 down in db/db mice resulted in a significant reduction in triglyceride accumulation, as anticipated. However, mice remained hyperglycemic, which was associated with up-regulation of gluconeogenesis gene expression as well as decreased glycolysis and glycogen synthesis gene expression. Furthermore, glycogen synthase activity and glycogen accumulation were significantly reduced. In conclusion, silencing both isoforms of SREBP-1 leads to significant changes in carbohydrate metabolism and does not improve insulin resistance despite reducing steatosis in an animal model of obesity and type 2 diabetes.
  • Loading...
    Thumbnail Image
    Item
    A study on the mechanism of ethanol-induced suppression of hepatic gluconeogenesis
    (1969) Lumeng, Lawrence
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University