- Browse by Subject
Browsing by Subject "Glial fibrillary acidic protein"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Assessment of Blood Biomarker Profile After Acute Concussion During Combative Training Among US Military Cadets(JAMA, 2021-02) Giza, Christopher C.; McCrea, Michael; Huber, Daniel; Cameron, Kenneth L.; Houston, Megan N.; Jackson, Jonathan C.; McGinty, Gerald; Pasquina, Paul; Broglio, Steven P.; Brooks, Alison; DiFiori, John; Duma, Stefan; Harezlak, Jaroslaw; Goldman, Joshua; Guskiewicz, Kevin; McAllister, Thomas W.; McArthur, David; Meier, Timothy B.; Mihalik, Jason P.; Nelson, Lindsay D.; Rowson, Steven; Gill, Jessica; Foroud, Tatiana; Katz, Barry; Saykin, Andrew; Campbell, Darren E.; Svoboda, Steven; Psychiatry, School of MedicineImportance: Validation of protein biomarkers for concussion diagnosis and management in military combative training is important, as these injuries occur outside of traditional health care settings and are generally difficult to diagnose. Objective: To investigate acute blood protein levels in military cadets after combative training-associated concussions. Design, setting, and participants: This multicenter prospective case-control study was part of a larger cohort study conducted by the National Collegiate Athletic Association and the US Department of Defense Concussion Assessment Research and Education (CARE) Consortium from February 20, 2015, to May 31, 2018. The study was performed among cadets from 2 CARE Consortium Advanced Research Core sites: the US Military Academy at West Point and the US Air Force Academy. Cadets who incurred concussions during combative training (concussion group) were compared with cadets who participated in the same combative training exercises but did not incur concussions (contact-control group). Clinical measures and blood sample collection occurred at baseline, the acute postinjury point (<6 hours), the 24- to 48-hour postinjury point, the asymptomatic postinjury point (defined as the point at which the cadet reported being asymptomatic and began the return-to-activity protocol), and 7 days after return to activity. Biomarker levels and estimated mean differences in biomarker levels were natural log (ln) transformed to decrease the skewness of their distributions. Data were collected from August 1, 2016, to May 31, 2018, and analyses were conducted from March 1, 2019, to January 14, 2020. Exposure: Concussion incurred during combative training. Main outcomes and measures: Proteins examined included glial fibrillary acidic protein, ubiquitin C-terminal hydrolase-L1, neurofilament light chain, and tau. Quantification was conducted using a multiplex assay (Simoa; Quanterix Corp). Clinical measures included the Sport Concussion Assessment Tool-Third Edition symptom severity evaluation, the Standardized Assessment of Concussion, the Balance Error Scoring System, and the 18-item Brief Symptom Inventory. Results: Among 103 military service academy cadets, 67 cadets incurred concussions during combative training, and 36 matched cadets who engaged in the same training exercises did not incur concussions. The mean (SD) age of cadets in the concussion group was 18.6 (1.3) years, and 40 cadets (59.7%) were male. The mean (SD) age of matched cadets in the contact-control group was 19.5 (1.3) years, and 25 cadets (69.4%) were male. Compared with cadets in the contact-control group, those in the concussion group had significant increases in glial fibrillary acidic protein (mean difference in ln values, 0.34; 95% CI, 0.18-0.50; P < .001) and ubiquitin C-terminal hydrolase-L1 (mean difference in ln values, 0.97; 95% CI, 0.44-1.50; P < .001) levels at the acute postinjury point. The glial fibrillary acidic protein level remained high in the concussion group compared with the contact-control group at the 24- to 48-hour postinjury point (mean difference in ln values, 0.22; 95% CI, 0.06-0.38; P = .007) and the asymptomatic postinjury point (mean difference in ln values, 0.21; 95% CI, 0.05-0.36; P = .01). The area under the curve for all biomarkers combined, which was used to differentiate cadets in the concussion and contact-control groups, was 0.80 (95% CI, 0.68-0.93; P < .001) at the acute postinjury point. Conclusions and relevance: This study's findings indicate that blood biomarkers have potential for use as research tools to better understand the pathobiological changes associated with concussion and to assist with injury identification and recovery from combative training-associated concussions among military service academy cadets. These results extend the previous findings of studies of collegiate athletes with sport-associated concussions.Item Association between plasma tau and postoperative delirium incidence and severity: a prospective observational study(Elsevier, 2021) Ballweg, Tyler; White, Marissa; Parker, Margaret; Casey, Cameron; Bo, Amber; Farahbakhsh, Zahra; Kayser, Austin; Blair, Alexander; Lindroth, Heidi; Pearce, Robert A.; Blennow, Kaj; Zetterberg, Henrik; Lennertz, Richard; Sanders, Robert D.; Medicine, School of MedicineBackground: Postoperative delirium is associated with increases in the neuronal injury biomarker, neurofilament light (NfL). Here we tested whether two other biomarkers, glial fibrillary acidic protein (GFAP) and tau, are associated with postoperative delirium. Methods: A total of 114 surgical patients were recruited into two prospective biomarker cohort studies with assessment of delirium severity and incidence. Plasma samples were sent for biomarker analysis including tau, NfL, and GFAP, and a panel of 10 cytokines. We determined a priori to adjust for interleukin-8 (IL-8), a marker of inflammation, when assessing associations between biomarkers and delirium incidence and severity. Results: GFAP concentrations showed no relationship to delirium. The change in tau from preoperative concentrations to postoperative Day 1 was greater in patients with postoperative delirium (P<0.001) and correlated with delirium severity (ρ=0.39, P<0.001). The change in tau correlated with increases in IL-8 (P<0.001) and IL-10 (P=0.0029). Linear regression showed that the relevant clinical predictors of tau changes were age (P=0.037), prior stroke/transient ischaemic attack (P=0.001), and surgical blood loss (P<0.001). After adjusting for age, sex, preoperative cognition, and change in IL-8, tau remained significantly associated with delirium severity (P=0.026). Using linear mixed effect models, only tau (not NfL or IL-8) predicted recovery from delirium (P<0.001). Conclusions: The change in plasma tau was associated with delirium incidence and severity, and resolved over time in parallel with delirium features. The impact of this putative perioperative neuronal injury biomarker on long-term cognition merits further investigation.Item Association of Donanemab Treatment With Exploratory Plasma Biomarkers in Early Symptomatic Alzheimer Disease: A Secondary Analysis of the TRAILBLAZER-ALZ Randomized Clinical Trial(American Medical Association, 2022) Pontecorvo, Michael J.; Lu, Ming; Burnham, Samantha C.; Schade, Andrew E.; Dage, Jeffrey L.; Shcherbinin, Sergey; Collins, Emily C.; Sims, John R.; Mintun, Mark A.; Neurology, School of MedicineImportance: Plasma biomarkers of Alzheimer disease may be useful as minimally invasive pharmacodynamic measures of treatment outcomes. Objective: To analyze the association of donanemab treatment with plasma biomarkers associated with Alzheimer disease. Design, setting, and participants: TRAILBLAZER-ALZ was a randomized, double-blind, placebo-controlled clinical trial conducted from December 18, 2017, to December 4, 2020, across 56 sites in the US and Canada. Exploratory biomarkers were prespecified with the post hoc addition of plasma glial fibrillary acidic protein and amyloid-β. Men and women aged 60 to 85 years with gradual and progressive change in memory function for at least 6 months were included. A total of 1955 participants were assessed for eligibility. Key eligibility criteria include Mini-Mental State Examination scores of 20 to 28 and elevated amyloid and intermediate tau levels. Interventions: Randomized participants received donanemab or placebo every 4 weeks for up to 72 weeks. The first 3 doses of donanemab were given at 700 mg and then increased to 1400 mg with blinded dose reductions as specified based on amyloid reduction. Main outcomes and measures: Change in plasma biomarker levels after donanemab treatment. Results: In TRAILBLAZER-ALZ, 272 participants (mean [SD] age, 75.2 [5.5] years; 145 [53.3%] female) were randomized. Plasma levels of phosphorylated tau217 (pTau217) and glial fibrillary acidic protein were significantly lower with donanemab treatment compared with placebo as early as 12 weeks after the start of treatment (least square mean change difference vs placebo, -0.04 [95% CI, -0.07 to -0.02]; P = .002 and -0.04 [95% CI, -0.07 to -0.01]; P = .01, respectively). No significant differences in plasma levels of amyloid-β 42/40 and neurofilament light chain were observed between treatment arms at the end of treatment. Changes in plasma pTau217 and glial fibrillary acidic protein were significantly correlated with the Centiloid percent change in amyloid (Spearman rank correlation coefficient [R] = 0.484 [95% CI, 0.359-0.592]; P < .001 and R = 0.453 [95% CI, 0.306-0.579]; P < .001, respectively) following treatment. Additionally, plasma levels of pTau217 and glial fibrillary acidic protein were significantly correlated at baseline and following treatment (R = 0.399 [95% CI, 0.278-0.508], P < .001 and R = 0.393 [95% CI, 0.254-0.517]; P < .001, respectively). Conclusions and relevance: Significant reductions in plasma biomarkers pTau217 and glial fibrillary acidic protein compared with placebo were observed following donanemab treatment in patients with early symptomatic Alzheimer disease. These easily accessible plasma biomarkers might provide additional evidence of Alzheimer disease pathology change through anti-amyloid therapy. Usefulness in assessing treatment response will require further evaluation.Item Confounding factors of Alzheimer’s disease plasma biomarkers and their impact on clinical performance(Wiley, 2023) Pichet Binette, Alexa; Janelidze, Shorena; Cullen, Nicholas; Dage, Jeffrey L.; Bateman, Randall J.; Zetterberg, Henrik; Blennow, Kaj; Stomrud, Erik; Mattsson-Carlgren, Niklas; Hansson, Oskar; Neurology, School of MedicineIntroduction: Plasma biomarkers will likely revolutionize the diagnostic work-up of Alzheimer's disease (AD) globally. Before widespread use, we need to determine if confounding factors affect the levels of these biomarkers, and their clinical utility. Methods: Participants with plasma and CSF biomarkers, creatinine, body mass index (BMI), and medical history data were included (BioFINDER-1: n = 748, BioFINDER-2: n = 421). We measured beta-amyloid (Aβ42, Aβ40), phosphorylated tau (p-tau217, p-tau181), neurofilament light (NfL), and glial fibrillary acidic protein (GFAP). Results: In both cohorts, creatinine and BMI were the main factors associated with NfL, GFAP, and to a lesser extent with p-tau. However, adjustment for BMI and creatinine had only minor effects in models predicting either the corresponding levels in CSF or subsequent development of dementia. Discussion: Creatinine and BMI are related to certain plasma biomarkers levels, but they do not have clinically relevant confounding effects for the vast majority of individuals. Highlights: Creatinine and body mass index (BMI) are related to certain plasma biomarker levels. Adjusting for creatinine and BMI has minor influence on plasma-cerebrospinal fluid (CSF) associations. Adjusting for creatinine and BMI has minor influence on prediction of dementia using plasma biomarkers.Item Head-to-head comparison of leading blood tests for Alzheimer's disease pathology(Wiley, 2024) Schindler, Suzanne E.; Petersen, Kellen K.; Saef, Benjamin; Tosun, Duygu; Shaw, Leslie M.; Zetterberg, Henrik; Dage, Jeffrey L.; Ferber, Kyle; Triana-Baltzer, Gallen; Du-Cuny, Lei; Li, Yan; Coomaraswamy, Janaky; Baratta, Michael; Mordashova, Yulia; Saad, Ziad S.; Raunig, David L.; Ashton, Nicholas J.; Meyers, Emily A.; Rubel, Carrie E.; Rosenbaugh, Erin G.; Bannon, Anthony W.; Potter, William Z.; Neurology, School of MedicineIntroduction: Blood tests have the potential to improve the accuracy of Alzheimer's disease (AD) clinical diagnosis, which will enable greater access to AD-specific treatments. This study compared leading commercial blood tests for amyloid pathology and other AD-related outcomes. Methods: Plasma samples from the Alzheimer's Disease Neuroimaging Initiative were assayed with AD blood tests from C2N Diagnostics, Fujirebio Diagnostics, ALZPath, Janssen, Roche Diagnostics, and Quanterix. Outcomes measures were amyloid positron emission tomography (PET), tau PET, cortical thickness, and dementia severity. Logistic regression models assessed the classification accuracies of individual or combined plasma biomarkers for binarized outcomes, and Spearman correlations evaluated continuous relationships between individual plasma biomarkers and continuous outcomes. Results: Measures of plasma p-tau217, either individually or in combination with other plasma biomarkers, had the strongest relationships with all AD outcomes. Discussion: This study identified the plasma biomarker analytes and assays that most accurately classified amyloid pathology and other AD-related outcomes. Highlights: Plasma p-tau217 measures most accurately classified amyloid and tau status. Plasma Aβ42/Aβ40 had relatively low accuracy in classification of amyloid status. Plasma p-tau217 measures had higher correlations with cortical thickness than NfL. Correlations of plasma biomarkers with dementia symptoms were relatively low.Item Risk of Alzheimer's disease is associated with longitudinal changes in plasma biomarkers in the multi‐ethnic Washington Heights–Hamilton Heights–Inwood Columbia Aging Project (WHICAP) cohort(Wiley, 2024) Gu, Yian; Honig, Lawrence S.; Kang, Min Suk; Bahl, Aanya; Sanchez, Danurys; Reyes-Dumeyer, Dolly; Manly, Jennifer J.; Dage, Jeffrey L.; Lantigua, Rafael A.; Brickman, Adam M.; Vardarajan, Badri N.; Mayeux, Richard; Neurology, School of MedicineBackground: Alzheimer's disease (AD) biomarkers can help differentiate cognitively unimpaired (CU) individuals from mild cognitive impairment (MCI) and dementia. The role of AD biomarkers in predicting cognitive impairment and AD needs examination. Methods: In 628 CU individuals from a multi-ethnic cohort, amyloid beta (Aβ)42, Aβ40, phosphorylated tau-181 (p-tau181), glial fibrillary acidic protein (GFAP), and neurofilament light chain (NfL) were measured in plasma. Results: Higher baseline levels of p-tau181/Aβ42 ratio were associated with an increased risk of incident dementia. A biomarker pattern (with elevated Aβ42/Aβ40 but low p-tau181/Aβ42) was associated with decreased dementia risk. Compared to CU, participants who developed MCI or dementia had a rapid decrease in this protective biomarker pattern reflecting AD-specific pathological change. Discussion: Elevated levels of AD biomarker p-tau181/Aβ42, by itself or combined with a low Aβ42/Aβ40 level, predicts clinically diagnosed AD. Individuals with a rapid change in these biomarkers may need close monitoring for the potential downward trajectory of cognition. Highlights: We discuss a multi-ethnic, urban community study of elderly individuals. The study consisted of a longitudinal assessment over 6 years with repeated clinical assessments. The study used blood-based biomarkers as predictors of mild cognitive impairment and Alzheimer's disease.