- Browse by Subject
Browsing by Subject "Genetic transcription"
Now showing 1 - 10 of 12
Results Per Page
Sort Options
Item COMPARATIVE ANALYSIS OF THE DISCORDANCE BETWEEN THE GLOBAL TRANSCRIPTIONAL AND PROTEOMIC RESPONSE OF THE YEAST SACCHAROMYCES CEREVISIAE TO DELETION OF THE F-BOX PROTEIN, GRR1(2010-05) Heyen, Joshua William; Goebl, Mark, 1958-; Roach, Peter J.; Clemmer, David E.; Wang, Mu; Chen, JakeThe Grr1 (Glucose Repression Resistant) protein in Saccharomyces cerevisiae is an F-box protein for the E3 ubiquitin ligase protein complex known as the SCFGrr1 (Skp, Cullin, F-box). F-box proteins serve as substrate receptors for this complex and in this capacity Grr1 serves to promote the ubiquitylation and subsequent proteasomal degradation of a number of intracellular protein substrates. Substrates of SCFGrr1 include the G1-S phase cyclins, Cln1 and Cln2, the Cdc42 effectors and cell polarity proteins, Gic1 and Gic2, the FCH-bar domain protein, Hof1, required for cytokinesis, the meiosis activating serine/threonine protein kinase, Ime2, the transcriptional regulators of glucose transporters, Mth1 and Std1, and the mitochondrial retrograde response inhibitor Mks1. Stabilization of these substrates lead to pleiotrophic phenotypic defects in grr1Δ strains including resistance to glucose repression, accumulation of grr1Δ cells in G2 and M phase of the cell cycle, sensitivity to osmotic stress, and resistance to divalent cations. However, many of these phenotypes are not reflected at the gene expression level. We conducted a quantitative genomic vii and proteomic comparison of 914 loci in a grr1Δ and wild-type strain grown to early log-phase in glucose media. These loci encompassed 16.7% of the Saccharomyces proteome of which 22.3% exhibited discordance between gene and protein expression. GO process enrichment analysis revealed that discordant loci were enriched in the processes of “trafficking”, “mitosis”, and “carbon/energy” metabolism. Here we show that these instances of discordance are biologically relevant and in fact reflect phenotypes of grr1Δ strains not evident at the transcriptional level. Additionally, through combined biochemical and network analysis of discordant loci among “carbon and energy metabolism” we were able to not only construct a model for central carbon metabolism in grr1Δ strains but also were able to elucidate a novel molecular event that may serve to regulate glucose repression of genes needed for respiration in response to changes in glucose concentration.Item DECODING THE TRANSCRIPTIONAL LANDSCAPE OF TRIPLE-NEGATIVE BREAST CANCER USING NEXT GENERATION WHOLE TRANSCRIPTOME SEQUENCING(2012-03-16) Radovich, Milan; Schneider, Bryan P.; Flockhart, David A.; Ivan, Mircea; Herbert, Brittney-Shea; Grimes, Brenda R.; Nakshatri, HarikrishnaTriple-negative breast cancers (TNBCs) are negative for the expression of estrogen (ER), progesterone (PR), and HER-2 receptors. TNBC accounts for 15% of all breast cancers and results in disproportionally higher mortality compared to ER & HER2-positive tumours. Moreover, there is a paucity of therapies for this subtype of breast cancer resulting primarily from an inadequate understanding of the transcriptional differences that differentiate TNBC from normal breast. To this end, we embarked on a comprehensive examination of the transcriptomes of TNBCs and normal breast tissues using next-generation whole transcriptome sequencing (RNA-Seq). By comparing RNA-seq data from these tissues, we report the presence of differentially expressed coding and non-coding genes, novel transcribed regions, and mutations not previously reported in breast cancer. From these data we have identified two major themes. First, BRCA1 mutations are well known to be associated with development of TNBC. From these data we have identified many genes that work in concert with BRCA1 that are dysregulated suggesting a role of BRCA1 associated genes with sporadic TNBC. In addition, we observe a mutational profile in genes also associated with BRCA1 and DNA repair that lend more evidence to its role. Second, we demonstrate that using microdissected normal epithelium maybe an optimal comparator when searching for novel therapeutic targets for TNBC. Previous studies have used other controls such as reduction mammoplasties, adjacent normal tissue, or other breast cancer subtypes, which may be sub-optimal and have lead to identifying ineffective therapeutic targets. Our data suggests that the comparison of microdissected ductal epithelium to TNBC can identify potential therapeutic targets that may lead to be better clinical efficacy. In summation, with these data, we provide a detailed transcriptional landscape of TNBC and normal breast that we believe will lead to a better understanding of this complex disease.Item Determination of the nucleotide sequence of a human amylase gene and analysis of intron/exon structure(1985) Handy, Diane ElizabethItem Epigenetic alteration by prenatal alcohol exposure in developing mouse hippocampus and cortex(2014-08) Chen, Yuanyuan; Zhou, Feng C.; Jin, Xiao-Ming; Truitt, William A.; Reiter, Jill L.Fetal alcohol spectrum disorders (FASD) is the leading neurodevelopment deficit in children born to women who drink alcohol during pregnancy. The hippocampus and cortex are among brain regions vulnerable to alcohol-induced neurotoxicity, and are key regions underlying the cognitive impairment, learning and memory deficits shown in FASD individuals. Hippocampal and cortical neuronal differentiation and maturation are highly influenced by both intrinsic transcriptional signaling and extracellular cues. Epigenetic mechanisms, primarily DNA methylation and histone modifications, are hypothesized to be involved in regulating key neural development events, and are subject to alcohol exposure. Alcohol is shown to modify DNA methylation and histone modifications through altering methyl donor metabolisms. Recent studies in our laboratory have shown that alcohol disrupted genome-wide DNA methylation and delayed early embryonic development. However, how alcohol affects DNA methylation in fetal hippocampal and cortical development remains elusive, therefore, will be the theme of this study. We reported that, in a dietary alcohol-intake model of FASD, prenatal alcohol exposure retarded the development of fetal hippocampus and cortex, accompanied by a delayed cellular DNA methylation program. We identified a programed 5-methylcytosine (5mC) and 5-hydroxylmethylcytosine (5hmC) cellular and chromatic re-organization that was associated with neuronal differentiation and maturation spatiotemporally, and this process was hindered by prenatal alcohol exposure. Furthermore, we showed that alcohol disrupted locus-specific DNA methylation on neural specification genes and reduced neurogenic properties of neural stem cells, which might contribute to the aberration in neurogenesis of FASD individuals. The work of this dissertation suggested an important role of DNA methylation in neural development and elucidated a potential epigenetic mechanism in the alcohol teratogenesis.Item Modeling cancer predisposition: Profiling Li-Fraumeni syndrome patient-derived cell lines using bioinformatics and three-dimensional culture models(2015-10-07) Phatak, Amruta Rajendra; Herbert, Brittney-Shea; Liu, Yunlong; Mendonca, Marc S.; Wells, Clark D.Although rare, classification of over 200 hereditary cancer susceptibility syndromes accounting for ~5-10% of cancer incidence has enabled the discovery and understanding of cancer predisposition genes that are also frequently mutated in sporadic cancers. The need to prevent or delay invasive cancer can partly be addressed by characterization of cells derived from healthy individuals predisposed to cancer due to inherited "single-hits" in genes in order to develop patient-derived samples as preclinical models for mechanistic in vitro studies. Here, we present microarray-based transcriptome profiling of Li-Fraumeni syndrome (LFS) patient-derived unaffected breast epithelial cells and their phenotypic characterization as in vitro three-dimensional (3D) models to test pharmacological agents. In this study, the epithelial cells derived from the unaffected breast tissue of a LFS patient were cultured and progressed from non-neoplastic to a malignant stage by successive immortalization and transformation steps followed by growth in athymic mice. These cell lines exhibited distinct transcriptomic profiles and were readily distinguishable based upon their gene expression patterns, growth characteristics in monolayer and in vitro 3D cultures. Transcriptional changes in the epithelial-to-mesenchymal transition gene signature contributed to the unique phenotypes observed in 3D culture for each cell line of the progression series; the fully transformed LFS cells exhibited invasive processes in 3D culture with disorganized morphologies due to cell-cell miscommunication, as seen in breast cancer. Bioinformatics analysis of the deregulated genes and pathways showed inherent differences between these cell lines and targets for pharmacological agents. After treatment with small molecule APR-246 that restores normal function to mutant p53, we observed that the neoplastic LFS cells had reduced malignant invasive structure formation from 73% to 9%, as well as an observance of an increase in formation of well-organized structures in 3D culture (from 27% to 91%) by stereomicroscopy and confocal microscopy. Therefore, the use of well-characterized and physiologically relevant preclinical models in conjunction with transcriptomic profiling of high-risk patient derived samples as a renewable laboratory resource can potentially guide the development of safer and more effective chemopreventive approaches.Item OperomeDB: database of condition specific transcription in prokaryotic genomes and genomic insights of convergent transcription in bacterial genomes(2014-10-27) Chetal, Kashish; Janga, Sarath Chandra; Wanner, Barry L.; Liu, YunlongMy thesis comprises of two individual projects: 1) we have developed a database for operon prediction using high-throughput sequencing datasets for bacterial genomes. 2) Genomics and mechanistic insights of convergent transcription in bacterial genomes. In the first project we developed a database for the prediction of operons for bacterial genomes using RNA-seq datasets, we predicted operons for bacterial genomes. RNA-seq datasets with different condition for each bacterial genome were taken into account and predicted operons using Rockhopper. We took RNA-seq datasets from NCBI with distinct experimental conditions for each bacterial genome into account and analyzed using tool for operon prediction. Currently our database contains 9 bacterial organisms for which we predicted operons. User interface is simple and easy to use, in terms of visualization, downloading and querying of data. In our database user can browse through reference genome, genes present in that genome and operons predicted from different RNA-seq datasets. Further in the second project, we studied the genomic and mechanistic insights of convergent transcription in bacterial genomes. We know that convergent gene pairs with overlapping head-to-head configuration are widely spread across both eukaryotic and prokaryotic genomes. They are believed to contribute to the regulation of genes at both transcriptional and post-transcriptional levels, although factors contributing to their abundance across genomes and mechanistic basis for their prevalence are poorly understood. In this study, we explore the role of various factors contributing to convergent overlapping transcription in bacterial genomes. Our analysis shows that the proportion of convergent overlapping gene pairs (COGPs) in a genome is affected due to endospore formation, bacterial habitat, oxygen requirement, GC content and the temperature range. In particular, we show that bacterial genomes thriving in specialized habitats, such as thermophiles, exhibit a high proportion of COGPs. Our results also conclude that the density distribution of COGPs across the genomes is high for shorter overlaps with increased conservation of distances for decreasing overlaps. Our study further reveals that COGPs frequently contain stop codon overlaps with the middle base position exhibiting mismatches between complementary strands. Further, for the functional analysis using cluster of orthologous groups (COGs) annotations suggested that cell motility, cell metabolism, storage and cell signaling are enriched among COGPs, suggesting their role in processes beyond regulation. Our analysis provides genomic insights into this unappreciated regulatory phenomenon, allowing a refined understanding of their contribution to bacterial phenotypes.Item Phospho-regulation and metastatic potential of Murine Double Minute 2(2012-08) Batuello, Christopher N.; Mayo, Lindsey D.; Dynlacht, Joseph R.; Goebl, Mark G.; Pollok, Karen E.Murine double minute (Mdm2) is a highly modified and multi-faceted protein that is overexpressed in numerous human malignancies. It engages in many cellular activities and is essential for development since deletion of mdm2 is lethal in early stages of embryonic development. The most studied function of Mdm2 is as a negative regulator of the tumor suppressor protein p53. Mdm2 achieves this regulation by binding to p53 and inhibiting p53 transcriptional activity. Mdm2 also functions as an E3 ubiquitin ligase that signals p53 for destruction by the proteasome. Interestingly recent evidence has shown that Mdm2 can also function as an E3 neddylating enzyme that can conjugate the ubiquitin-like molecule, nedd8, to p53. This modification results in inhibition of p53 activity, while maintaining p53 protein levels. While the signaling events that regulate Mdm2 E3 ubiquitin ligase activity have been extensively studied, what activates the neddylating activity of Mdm2 has remained elusive. My investigations have centered on understanding whether tyrosine kinase signaling could activate the neddylating activity of Mdm2. I have shown that c-Src, a non-receptor protein tyrosine kinase that is involved in a variety of cellular processes, phosphorylates Mdm2 on tyrosines 281 and 302. This phosphorylation event increases the half-life and neddylating activity of Mdm2 resulting in a neddylation dependent reduction of p53 transcriptional activity. Mdm2 also has many p53-independent cellular functions that are beginning to be linked to its role as an oncogene. There is an emerging role for Mdm2 in tumor metastasis. Metastasis is a process involving tumor cells migrating from a primary site to a distal site and is a major cause of morbidity and mortality in cancer patients. To date, the involvement of Mdm2 in breast cancer metastasis has only been correlative, with no in vivo model to definitively define a role for Mdm2. Here I have shown in vivo that Mdm2 enhances breast to lung metastasis through the up regulation of multiple angiogenic factors, including HIF-1 alpha and VEGF. Taken together my data provide novel insights into important p53-dependent and independent functions of Mdm2 that represent potential new avenues for therapeutic intervention.Item Regulation of papillomavirus E2 protein by posttranslational modification(2015-04-24) Culleton, Sara Poirier; Androphy, Elliot J.; Klemsz, Michael; Mayo, Lindsey; Nakshatri, Harikrishna; Sullivan, William J., Jr.Papillomaviruses (PVs) are small, double-stranded DNA viruses. Hundreds of species have evolved to replicate in mammals, birds, and reptiles. Approximately two hundred species are estimated to infect humans alone, and these human papillomaviruses (HPVs) cause diseases ranging from benign warts to anogenital and oropharyngeal cancers. While vaccination is effective at preventing the majority of these infections and their disease outcomes, there are no successful treatments for existing infections; thus, exploration of novel therapeutic targets is warranted. PVs control expression and function of their gene products through alternative splicing, alternate start codons, and post-translational modification (PTM). The viral E2 protein regulates transcription, replication, and genome maintenance in infected cells, and PTMs have been demonstrated for E2 proteins from multiple papillomavirus types. Serine phosphorylation events were reported to influence E2 stability, and our laboratory was the first to describe in vitro acetylation events with implications for E2 transcription function. Here we report confirmation of these acetylation events in vivo and additional data elucidating the role of these PTMs in viral transcription. Moreover, we present a novel phosphorylation site for bovine papillomavirus type 1 (BPV-1) E2 at tyrosine 102 (Y102). Using phospho-deficient and phospho-mimetic point mutants, we found that this site influences E2-mediated transcription and replication, and we hypothesize that phosphorylation at Y102 regulates these activities by interrupting the association of E2 with its binding partners. We also report interaction of BPV-1 E2 and HPV-31 E2 with different receptor tyrosine kinases (TKs), most notably members of the fibroblast growth factor receptor family. We hypothesize that Y102 phosphorylation by these receptors occurs early in infection to limit viral replication and gene expression. Further studies will cement the role of RTKs in PV biology and could reveal novel therapeutic strategies.Item Studies on the transcriptional regulation of the enterotoxigenic Escherichia coli STII gene(1986) Spandau, Dan F.Item Tip110 Control of HIV-1 Gene Expression and Replication(2011-08-23) Zhao, Weina; He, Johnny J.; Kaplan, Mark H.; Nakshatri, Harikrishna; Yu, Andy Qigui; Takagi, YuichiroTranscription and alternative splicing play important roles in HIV-1 gene expression and replication and mandate complicated but coordinated interactions between the host and the virus. Studies from our group have shown that a HIV-1 Tat-interacting protein of 110 kDa, Tip110 synergies with Tat in Tat-mediated HIV-1 gene transcription and replication. However, the underlying molecular mechanisms were not fully understood and are the focus of the dissertation research. In the study, we first demonstrated that Tip110 bound to unphosphorylated RNA polymerase II (RNAPII) in a direct and specific manner. We then showed that Tip110 was detected at the HIV-1 long terminal repeat (LTR) promoter and associated with increased phosphorylation of serine 2 within the RNAPII C-terminal domain (CTD) and increased recruitment of positive transcription elongation factor b (P-TEFb) to the LTR promoter. Consistent with these findings, we demonstrated that Tip110 interaction with Tat directly enhanced transcription elongation of the LTR promoter. During these studies, we also found that Tip110 altered HIV-1 mRNA alternative splicing and increased tat mRNA production. Subsequent analysis indicated that Tip110 selectively increased tat exons 1-2 splicing by activating HIV-1 A3 splice site but had no function in tat exons 2-3 splicing. We then showed that the preferential splicing activity of Tip110 resulted from Tip110 complex formation with hnRNP A1 protein, a negative splicing regulator that binds to the ESS2 element within tat exon 2, and as a result, blocked the complex formation of hnRNP A1 with ESS2 and subsequently activated HIV-1 A3 splice site. Taken together, these results show that Tip110 functions to regulate HIV-1 transcription elongation and HIV-1 RNA alternative splicing. These findings not only add to our understanding of Tip110 biology and function but also uncover a new potential target for development of anti-HIV intervention and therapeutic strategies.