Epigenetic alteration by prenatal alcohol exposure in developing mouse hippocampus and cortex
Date
Authors
Language
Embargo Lift Date
Department
Committee Chair
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract
Fetal alcohol spectrum disorders (FASD) is the leading neurodevelopment deficit in children born to women who drink alcohol during pregnancy. The hippocampus and cortex are among brain regions vulnerable to alcohol-induced neurotoxicity, and are key regions underlying the cognitive impairment, learning and memory deficits shown in FASD individuals. Hippocampal and cortical neuronal differentiation and maturation are highly influenced by both intrinsic transcriptional signaling and extracellular cues. Epigenetic mechanisms, primarily DNA methylation and histone modifications, are hypothesized to be involved in regulating key neural development events, and are subject to alcohol exposure. Alcohol is shown to modify DNA methylation and histone modifications through altering methyl donor metabolisms. Recent studies in our laboratory have shown that alcohol disrupted genome-wide DNA methylation and delayed early embryonic development. However, how alcohol affects DNA methylation in fetal hippocampal and cortical development remains elusive, therefore, will be the theme of this study. We reported that, in a dietary alcohol-intake model of FASD, prenatal alcohol exposure retarded the development of fetal hippocampus and cortex, accompanied by a delayed cellular DNA methylation program. We identified a programed 5-methylcytosine (5mC) and 5-hydroxylmethylcytosine (5hmC) cellular and chromatic re-organization that was associated with neuronal differentiation and maturation spatiotemporally, and this process was hindered by prenatal alcohol exposure. Furthermore, we showed that alcohol disrupted locus-specific DNA methylation on neural specification genes and reduced neurogenic properties of neural stem cells, which might contribute to the aberration in neurogenesis of FASD individuals. The work of this dissertation suggested an important role of DNA methylation in neural development and elucidated a potential epigenetic mechanism in the alcohol teratogenesis.