- Browse by Subject
Browsing by Subject "Gene expression"
Now showing 1 - 10 of 128
Results Per Page
Sort Options
Item 38766 Massively Parallel Reporter Assay Reveals Functional Impact of 3™-UTR SNPs Associated with Neurological and Psychiatric Disorders(Cambridge University Press, 2021) Chen, Andy B.; Thapa, Kriti; Gao, Hongyu; Reiter, Jill L.; Zhang, Junjie; Xuei, Xiaoling; Gu, Hongmei; Wang, Yue; Edenberg, Howard J.; Liu, Yunlong; Medical and Molecular Genetics, School of MedicineABSTRACT IMPACT: Screening the effect of thousands of non-coding genetic variants will help identify variants important in the etiology of diseases OBJECTIVES/GOALS: Massively parallel reporter assays (MPRAs) can experimentally evaluate the impact of genetic variants on gene expression. In this study, our objective was to systematically evaluate the functional activity of 3’-UTR SNPs associated with neurological disorders and use those results to help understand their contributions to disease etiology. METHODS/STUDY POPULATION: To choose variants to evaluate with the MPRA, we first gathered SNPs from the GWAS Catalog that were associated with any neurological disorder trait with p-value < 10-5. For each SNP, we identified the region that was in linkage disequilibrium (r2 > 0.8) and retrieved all the common 3’-UTR SNPs (allele-frequency > 0.05) within that region. We used an MPRA to measure the impact of these 3’-UTR variants in SH-SY5Y neuroblastoma cells and a microglial cell line. These results were then used to train a deep-learning model to predict the impact of variants and identify features that contribute to the predictions. RESULTS/ANTICIPATED RESULTS: Of the 13,515 3’-UTR SNPs tested, 400 and 657 significantly impacted gene expression in SH-SY5Y and microglia, respectively. Of the 84 SNPs significantly impacted in both cells, the direction of impact was the same in 81. The direction of eQTL in GTEx tissues agreed with the assay SNP effect in SH-SY5Y cells but not microglial cells. The deep-learning model predicted sequence activity level correlated with the experimental activity level (Spearman’s corr = 0.45). The deep-learning model identified several predictive motifs similar to motifs of RNA-binding proteins. DISCUSSION/SIGNIFICANCE OF FINDINGS: This study demonstrates that MPRAs can be used to evaluate the effect of non-coding variants, and the results can be used to train a machine learning model and interpret its predictions. Together, these can help identify causal variants and further understand the etiology of diseases.Item 5. Collaborative Study on the Genetics of Alcoholism: Functional genomics(Wiley, 2023) Gameiro-Ros, Isabel; Popova, Dina; Prytkova, Iya; Pang, Zhiping P.; Liu, Yunlong; Dick, Danielle; Bucholz, Kathleen K.; Agrawal, Arpana; Porjesz, Bernice; Goate, Alison M.; Xuei, Xiaoling; Kamarajan, Chella; COGA Collaborators; Tischfield, Jay A.; Edenberg, Howard J.; Slesinger, Paul A.; Hart, Ronald P.; Medical and Molecular Genetics, School of MedicineAlcohol Use Disorder is a complex genetic disorder, involving genetic, neural, and environmental factors, and their interactions. The Collaborative Study on the Genetics of Alcoholism (COGA) has been investigating these factors and identified putative alcohol use disorder risk genes through genome-wide association studies. In this review, we describe advances made by COGA in elucidating the functional changes induced by alcohol use disorder risk genes using multimodal approaches with human cell lines and brain tissue. These studies involve investigating gene regulation in lymphoblastoid cells from COGA participants and in post-mortem brain tissues. High throughput reporter assays are being used to identify single nucleotide polymorphisms in which alternate alleles differ in driving gene expression. Specific single nucleotide polymorphisms (both coding or noncoding) have been modeled using induced pluripotent stem cells derived from COGA participants to evaluate the effects of genetic variants on transcriptomics, neuronal excitability, synaptic physiology, and the response to ethanol in human neurons from individuals with and without alcohol use disorder. We provide a perspective on future studies, such as using polygenic risk scores and populations of induced pluripotent stem cell-derived neurons to identify signaling pathways related with responses to alcohol. Starting with genes or loci associated with alcohol use disorder, COGA has demonstrated that integration of multimodal data within COGA participants and functional studies can reveal mechanisms linking genomic variants with alcohol use disorder, and potential targets for future treatments.Item A new Down syndrome rat model races forward(Elsevier, 2022) Roper, Randall J.; Goodlett, Charles R.; Biology, School of ScienceAnimal models of Down syndrome (DS) provide an essential resource for understanding genetic, cellular, and molecular contributions to traits associated with trisomy 21 (Ts21). Recent genetic enhancements in the development of DS models, including the new TcHSA21rat model (Kazuki et al.), have potential to transform our understanding of and potential therapies for Ts21.Item Acquisition, processing, and single-cell analysis of normal human breast tissues from a biobank(Cell Press, 2021-12-16) Bhat-Nakshatri, Poornima; Marino, Natascia; Gao, Hongyu; Liu, Yunlong; Storniolo, Anna Maria; Nakshatri, Harikrishna; Surgery, School of MedicineThe Komen Tissue Bank is the only biorepository in the world for normal breast tissues from women. Below we report the acquisition and processing of breast tissue from volunteer donors and describe an experimental and analysis pipeline to generate a single-cell atlas. This atlas is based on single-cell RNA-seq and is useful to derive breast epithelial cell subcluster-specific gene expression signatures, which can be applied to breast cancer gene expression data to identify putative cell-of-origin. For complete details on the use and execution of this protocol, please refer to Bhat-Nakshatri et al. (2021).Item ADARs employ a neural-specific mechanism to regulate PQM-1 expression and survival from hypoxia(bioRxiv, 2023-05-05) Mahapatra, Ananya; Dhakal, Alfa; Noguchi, Aika; Vadlamani, Pranathi; Hundley, Heather A.; Medicine, School of MedicineThe ability to alter gene expression programs in response to changes in environmental conditions is central to the ability of an organism to thrive. For most organisms, the nervous system serves as the master regulator in communicating information about the animal's surroundings to other tissues. The information relay centers on signaling pathways that cue transcription factors in a given cell type to execute a specific gene expression program, but also provide a means to signal between tissues. The transcription factor PQM-1 is an important mediator of the insulin signaling pathway contributing to longevity and the stress response as well as impacting survival from hypoxia. Herein, we reveal a novel mechanism for regulating PQM-1 expression specifically in neural cells of larval animals. Our studies reveal that the RNA binding protein, ADR-1, binds to pqm-1 mRNA in neural cells. This binding is regulated by the presence of a second RNA binding protein, ADR-2, which when absent leads to reduced expression of both pqm-1 and downstream PQM-1 activated genes. Interestingly, we find that neural pqm-1 expression is sufficient to impact gene expression throughout the animal and affect survival from hypoxia; phenotypes that we also observe in adr mutant animals. Together, these studies reveal an important post-transcriptional gene regulatory mechanism that allows the nervous system to sense and respond to environmental conditions to promote organismal survival from hypoxia.Item Adeno-Associated Virus D-Sequence-Mediated Suppression of Expression of a Human Major Histocompatibility Class II Gene: Implications in the Development of Adeno-Associated Virus Vectors for Modulating Humoral Immune Response(Mary Ann Liebert, Inc., 2020-05) Kwon, Hyung-Joo; Qing, Keyun; Ponnazhagan, Selvarangan; Wang, Xu-Shan; Markusic, David M.; Gupte, Siddhant; Boye, Shannon E.; Srivastava, Arun; Pediatrics, School of MedicineA 20-nt long sequence, termed the D-sequence, in the adeno-associated virus (AAV) inverted terminal repeat was observed to share a partial sequence homology with the X-box in the regulatory region of the human leukocyte antigen DRA (HLA-DRA) promoter of the human major histocompatibility complex class II (MHC-II) genes. The D-sequence was also shown to specifically interact with the regulatory factor binding to the X-box (RFX), binding of which to the X-box is a critical step in the MHC-II gene expression, suggesting that D-sequence might compete for RFX transcription factor binding, thereby suppressing expression from the MHC-II promoter. In DNA-mediated transfection experiments, using a reporter gene under the control of the HLA-DRA promoter, D-sequence oligonucleotides were found to inhibit expression of the reporter gene expression in HeLa and 293 cells by ∼93% and 96%, respectively. No inhibition was observed when nonspecific synthetic oligonucleotides were used. D-sequence oligonucleotides had no effect on expression from the cytomegalovirus immediate-early gene promoter. Interferon-γ-mediated activation of MHC-II gene expression was also inhibited by D-sequence oligonucleotides as well as after infection with either the wild-type AAV or transduction with recombinant AAV vectors. These studies suggest that the D-sequence-mediated downregulation of the MHC-II gene expression may be exploited toward the development of novel AAV vectors capable of dampening the host humoral response, which has important implication in the optimal use of these vectors in human gene therapy.Item Aglianico Grape Seed Semi-Polar Extract Exerts Anticancer Effects by Modulating MDM2 Expression and Metabolic Pathways(MDPI, 2023-01-04) Cuciniello, Rossana; Di Meo, Francesco; Sulli, Maria; Demurtas, Olivia Costantina; Tanori, Mirella; Mancuso, Mariateresa; Villano, Clizia; Aversano, Riccardo; Carputo, Domenico; Baldi, Alfonso; Diretto, Gianfranco; Filosa, Stefania; Crispi, Stefania; Medicine, School of MedicineGrapevine (Vitis vinifera L.) seeds are rich in polyphenols including proanthocyanidins, molecules with a variety of biological effects including anticancer action. We have previously reported that the grape seed semi-polar extract of Aglianico cultivar (AGS) was able to induce apoptosis and decrease cancer properties in different mesothelioma cell lines. Concomitantly, this extract resulted in enriched oligomeric proanthocyanidins which might be involved in determining the anticancer activity. Through transcriptomic and metabolomic analyses, we investigated in detail the anticancer pathway induced by AGS. Transcriptomics analysis and functional annotation allowed the identification of the relevant causative genes involved in the apoptotic induction following AGS treatment. Subsequent biological validation strengthened the hypothesis that MDM2 could be the molecular target of AGS and that it could act in both a p53-dependent and independent manner. Finally, AGS significantly inhibited tumor progression in a xenograft mouse model of mesothelioma, confirming also in vivo that MDM2 could act as molecular player responsible for the AGS antitumor effect. Our findings indicated that AGS, exerting a pro-apoptotic effect by hindering MDM2 pathway, could represent a novel source of anticancer molecules.Item AIscEA: unsupervised integration of single-cell gene expression and chromatin accessibility via their biological consistency(Oxford University Press, 2022) Jafari, Elham; Johnson, Travis; Wang, Yue; Liu, Yunlong; Huang, Kun; Wang, Yijie; Biostatistics and Health Data Science, School of MedicineMotivation: The integrative analysis of single-cell gene expression and chromatin accessibility measurements is essential for revealing gene regulation, but it is one of the key challenges in computational biology. Gene expression and chromatin accessibility are measurements from different modalities, and no common features can be directly used to guide integration. Current state-of-the-art methods lack practical solutions for finding heterogeneous clusters. However, previous methods might not generate reliable results when cluster heterogeneity exists. More importantly, current methods lack an effective way to select hyper-parameters under an unsupervised setting. Therefore, applying computational methods to integrate single-cell gene expression and chromatin accessibility measurements remains difficult. Results: We introduce AIscEA-Alignment-based Integration of single-cell gene Expression and chromatin Accessibility-a computational method that integrates single-cell gene expression and chromatin accessibility measurements using their biological consistency. AIscEA first defines a ranked similarity score to quantify the biological consistency between cell clusters across measurements. AIscEA then uses the ranked similarity score and a novel permutation test to identify cluster alignment across measurements. AIscEA further utilizes graph alignment for the aligned cell clusters to align the cells across measurements. We compared AIscEA with the competing methods on several benchmark datasets and demonstrated that AIscEA is highly robust to the choice of hyper-parameters and can better handle the cluster heterogeneity problem. Furthermore, AIscEA significantly outperforms the state-of-the-art methods when integrating real-world SNARE-seq and scMultiome-seq datasets in terms of integration accuracy. Availability and implementation: AIscEA is available at https://figshare.com/articles/software/AIscEA_zip/21291135 on FigShare as well as {https://github.com/elhaam/AIscEA} onGitHub.Item Altered skeletal muscle metabolic pathways, age, systemic inflammation, and low cardiorespiratory fitness associate with improvements in disease activity following high-intensity interval training in persons with rheumatoid arthritis(BMC, 2021-07-10) Andonian, Brian J.; Johannemann, Andrew; Hubal, Monica J.; Pober, David M.; Koss, Alec; Kraus, William E.; Bartlett, David B.; Huffman, Kim M.; Exercise & Kinesiology, School of Health and Human SciencesBackground: Exercise training, including high-intensity interval training (HIIT), improves rheumatoid arthritis (RA) inflammatory disease activity via unclear mechanisms. Because exercise requires skeletal muscle, skeletal muscle molecular pathways may contribute. The purpose of this study was to identify connections between skeletal muscle molecular pathways, RA disease activity, and RA disease activity improvements following HIIT. Methods: RA disease activity assessments and vastus lateralis skeletal muscle biopsies were performed in two separate cohorts of persons with established, seropositive, and/or erosive RA. Body composition and objective physical activity assessments were also performed in both the cross-sectional cohort and the longitudinal group before and after 10 weeks of HIIT. Baseline clinical assessments and muscle RNA gene expression were correlated with RA disease activity score in 28 joints (DAS-28) and DAS-28 improvements following HIIT. Skeletal muscle gene expression changes with HIIT were evaluated using analysis of covariance and biological pathway analysis. Results: RA inflammatory disease activity was associated with greater amounts of intramuscular adiposity and less vigorous aerobic exercise (both p < 0.05). HIIT-induced disease activity improvements were greatest in those with an older age, elevated erythrocyte sedimentation rate, low cardiorespiratory fitness, and a skeletal muscle molecular profile indicative of altered metabolic pathways (p < 0.05 for all). Specifically, disease activity improvements were linked to baseline expression of RA skeletal muscle genes with cellular functions to (1) increase amino acid catabolism and interconversion (GLDC, BCKDHB, AASS, PYCR, RPL15), (2) increase glycolytic lactate production (AGL, PDK2, LDHB, HIF1A), and (3) reduce oxidative metabolism via altered beta-oxidation (PXMP2, ACSS2), TCA cycle flux (OGDH, SUCLA2, MDH1B), and electron transport chain complex I function (NDUFV3). The muscle mitochondrial glycine cleavage system (GCS) was identified as critically involved in RA disease activity improvements given upregulation of multiple GCS genes at baseline, while GLDC was significantly downregulated following HIIT. Conclusion: In the absence of physical activity, RA inflammatory disease activity is associated with transcriptional remodeling of skeletal muscle metabolism. Following exercise training, the greatest improvements in disease activity occur in older, more inflamed, and less fit persons with RA. These exercise training-induced immunomodulatory changes may occur via reprogramming muscle bioenergetic and amino acid/protein homeostatic pathways.Item Analysis of the cryptic promoter in the 5'-UTR of P27(2012-03-19) Francis, Zachary T.; Zhang, Jian-Ting; Safa, Ahmad R.; Hocevar, Barbara A.Cyclin Dependent Kinase regulation is often manipulated by cancer cells to promote unlimited proliferation. P27 is an important regulator of Cyclin E/CDK 2, which has been found in low amounts in many types of malignant cancers. Lovastatin has been shown to cause cell cycle arrest in the G1 phase of the cell cycle by increasing the P27 protein. There has been some question, however, if lovastatin regulates P27 at the transcriptional or translational level. Although it has been claimed that P27 expression regulation is due to an IRES located in its 5’UTR, other studies suggested that P27 expression is regulated at the level of transcription. To further investigate the regulation mechanism of P27 expression, the 5’-UTR of P27 and its deletion mutants were examined using a luciferase reporter gene in HeLa cells following exposure to lovastatin. It was found that lovastatin stimulated a significant 1.4 fold increase in its promoter activity of the full length 5’UTR (575). Deletion of 35 nucleotides from the 5’ end of the UTR eliminated the lovastatin-induced increase in promoter activity. Further mapping analyses of the first 35 bases showed that two regions, M1 (575-559) and M3 (543-527), were less sensitive to lovastatin than the other mutated constructs. Since M1 and M3 still showed some activity, a construct was created with deletions in both the M1 and M3 regions. This showed no increase in luciferase activity when exposed to lovastatin. Looking at RNA levels, there was a 1.5 fold increase in RNA when the full length 5’UTR was inserted into HeLa cells and exposed to 81 µM of lovastatin. In contrast, there was no increase in RNA when M1/M3 (575-559; 543-527) was inserted into HeLa cells and exposed to 81 µM of lovastatin. In addition, there was a 1.6 fold increase in endogenous P27 RNA levels after HeLa cells were exposed to 81 µM of lovastatin. In all of these experiments, there seems to be two promoters that work cooperatively: M1 (575-559) and M3 (543-527).