- Browse by Subject
Browsing by Subject "Fungi"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Biological and biochemical studies of cellular interactions in Schizophyllum commune(1985) Nguyen, Tan ThachItem Investigating the Biosynthetic Pathways to Polyacetylenic Natural Products in Fistulina hepatica and Echinacea purpurea(2013-08-20) Ransdell, Anthony S.; Minto, Robert; Long, Eric C. (Eric Charles); Li, LeiPolyacetylenic natural products, compounds containing multiple carbon-carbon triple bonds, have been found in a large collection of organisms. Radiochemical tracer studies have indicated that these bioactive metabolites are synthesized from fatty acid precursors through a series of uncharacterized desaturation and acetylenation steps. To date, there are three main pathways believed to be involved in acetylenic natural product biosynthesis. However, it is apparent that the crepenynic acid pathway is the origin of a vast majority of the known plant and fungal acetylenic products. This investigation provides concrete evidence that the polyacetylenic natural products found in the fungus Fistulina hepatica and the medicinal plant species Echinacea purpurea are biosynthesized from crepenynic acid. Through heterologous expression in Yarrowia lipolytica, two acetylenases capable of producing crepenynic acid were identified from E. purpurea. Furthermore, heterologous expression of two diverged desaturases isolated from F. hepatica, uncovered a ∆12-acetylenase and the first multifunctional enzyme capable of ∆14-/∆16- desaturation and ∆14-acetylenation.Item Microbial rRNA sequencing analysis of evaporative cooler indoor environments located in the Great Basin Desert region of the United States(Royal Society of Chemistry, 2017-02-22) Lemons, Angela R.; Hogan, Mary Beth; Gault, Ruth A.; Holland, Kathleen; Sobek, Edward; Olsen-Wilson, Kimberly A.; Park, Yeonmi; Park, Ju-Hyeong; Gu, Ja Kook; Kashon, Michael L.; Green, Brett J.; Pediatrics, School of MedicineRecent studies conducted in the Great Basin Desert region of the United States have shown that skin test reactivity to fungal and dust mite allergens are increased in children with asthma or allergy living in homes with evaporative coolers (EC). The objective of this study was to determine if the increased humidity previously reported in EC homes leads to varying microbial populations compared to homes with air conditioners (AC). Children with physician-diagnosed allergic rhinitis living in EC or AC environments were recruited into the study. Air samples were collected from the child's bedroom for genomic DNA extraction and metagenomic analysis of bacteria and fungi using the Illumina MiSeq sequencing platform. The analysis of bacterial populations revealed no major differences between EC and AC sampling environments. The fungal populations observed in EC homes differed from AC homes. The most prevalent species discovered in AC environments belonged to the genera Cryptococcus (20%) and Aspergillus (20%). In contrast, the most common fungi identified in EC homes belonged to the order Pleosporales and included Alternaria alternata (32%) and Phoma spp. (22%). The variations in fungal populations provide preliminary evidence of the microbial burden children may be exposed to within EC environments in this region.Item Multisystem Effects of Mold Inhalation: A Convergence on the Central Nervous System(2020-08) Ladd, Thatcher Bondi; Oblak, Adrian L.; Yoder, Karmen K.; Baucum, Anthony J. II; Truitt, William; Landreth, GaryWith urbanization, indoor exposure to microbial communities has changed significantly. While indoor bacterial exposure has decreased, indoor fungal exposure has increased. Along with increases in fungal species diversity, indoor air in urbanized countries is characterized by 1,000+ fold differences in mold spore density between buildings. Americans are estimated to spend ~87% of their lives in this new indoor environment, where airborne spore concentrations are unregulated. While the effects of mold exposure on certain respiratory diseases are well established, little is known about how inhaled mold affects extra-respiratory disease. Mold exposure is associated with central nervous system (CNS) symptoms in humans, but very little is known about how mold affects the CNS. Here, I show that subchronic inhalation of a common indoor mold, Aspergillus versicolor, causes neuroinflammatory gene transcription in five out of five brain regions tested, at both 1 and 2 days post inhalation. How peripheral inflammation from mold inhalation causes neuroinflammation is unknown. The mechanisms by which mold is inhaled and cleared implicate the lung, systemic circulation, and gastrointestinal tract as potential areas of immune response. After mold spores are inhaled and deposited in the lung, they are killed by antifungal immunity, cleared from the lung by the mucociliary escalator, swallowed, and excreted through the gastrointestinal tract. Molds produce many mycotoxins which enter enterohepatic recirculation with known toxic effects, including intestinal epithelial disruption. Mycotoxin concentrations in food are regulated in countries comprising ~85% of the world’s population. Inhaled molds produce these same mycotoxins, yet pulmonary exposure is unregulated. The multi-system effects of fungal exposure are poorly understood, and are part of a growing nascent field. Here, I discuss the current state of the indoor fungal environment, known health effects of mold exposure, how fungi activate the immune system, the CNS effects of a common indoor mold, how neuroinflammation from mold exposure might be occurring, future work needed for the systematic analysis of the CNS effects of mold, what is needed to determine the extent to which fungal exposure influences disease, and what might be done to mitigate those effects.