Investigating the Biosynthetic Pathways to Polyacetylenic Natural Products in Fistulina hepatica and Echinacea purpurea

Date
2013-08-20
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
M.S.
Degree Year
2012
Department
Department of Chemistry and Chemical Biology
Grantor
Purdue University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Polyacetylenic natural products, compounds containing multiple carbon-carbon triple bonds, have been found in a large collection of organisms. Radiochemical tracer studies have indicated that these bioactive metabolites are synthesized from fatty acid precursors through a series of uncharacterized desaturation and acetylenation steps. To date, there are three main pathways believed to be involved in acetylenic natural product biosynthesis. However, it is apparent that the crepenynic acid pathway is the origin of a vast majority of the known plant and fungal acetylenic products. This investigation provides concrete evidence that the polyacetylenic natural products found in the fungus Fistulina hepatica and the medicinal plant species Echinacea purpurea are biosynthesized from crepenynic acid. Through heterologous expression in Yarrowia lipolytica, two acetylenases capable of producing crepenynic acid were identified from E. purpurea. Furthermore, heterologous expression of two diverged desaturases isolated from F. hepatica, uncovered a ∆12-acetylenase and the first multifunctional enzyme capable of ∆14-/∆16- desaturation and ∆14-acetylenation.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Rights
Source
Alternative Title
Type
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}