- Browse by Subject
Browsing by Subject "Fluorescent dyes"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item A novel micellular fluorogenic substrate for quantitating the activity of 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma (PLCγ) enzymes(Public Library of Science, 2024-03-29) Visvanathan, Ramya; Utsuki, Tadanobu; Beck, Daniel E.; Clayton, W. Brent; Lendy, Emma; Sun, Kuai-lin; Liu, Yinghui; Hering, Kirk W.; Mesecar, Andrew; Zhang, Zhong-Yin; Putt, Karson S.; Pharmacology and Toxicology, School of MedicineThe activities of the phospholipase C gamma (PLCγ) 1 and 2 enzymes are essential for numerous cellular processes. Unsurprisingly, dysregulation of PLCγ1 or PLCγ2 activity is associated with multiple maladies including immune disorders, cancers, and neurodegenerative diseases. Therefore, the modulation of either of these two enzymes has been suggested as a therapeutic strategy to combat these diseases. To aid in the discovery of PLCγ family enzyme modulators that could be developed into therapeutic agents, we have synthesized a high-throughput screening-amenable micellular fluorogenic substrate called C16CF3-coumarin. Herein, the ability of PLCγ1 and PLCγ2 to enzymatically process C16CF3-coumarin was confirmed, the micellular assay conditions were optimized, and the kinetics of the reaction were determined. A proof-of-principle pilot screen of the Library of Pharmacologically Active Compounds 1280 (LOPAC1280) was performed. This new substrate allows for an additional screening methodology to identify modulators of the PLCγ family of enzymes.Item Genetic Encoding of Three Distinct Noncanonical Amino Acids Using Reprogrammed Initiator and Nonsense Codons(American Chemical Society, 2021) Tharp, Jeffery M.; Vargas-Rodriguez, Oscar; Schepartz, Alanna; Söll, Dieter; Biochemistry and Molecular Biology, School of MedicineWe recently described an orthogonal initiator tRNA (itRNATy2) that can initiate protein synthesis with noncanonical amino acids (ncAAs) in response to the UAG nonsense codon. Here, we report that a mutant of itRNATy2 (itRNATy2AUA) can efficiently initiate translation in response to the UAU tyrosine codon, giving rise to proteins with an ncAA at their N-terminus. We show that, in cells expressing itRNATy2AUA, UAU can function as a dual-use codon that selectively encodes ncAAs at the initiating position and predominantly tyrosine at elongating positions. Using itRNATy2AUA, in conjunction with its cognate tyrosyl-tRNA synthetase and two mutually orthogonal pyrrolysyl-tRNA synthetases, we demonstrate that UAU can be reassigned along with UAG or UAA to encode two distinct ncAAs in the same protein. Furthermore, by engineering the substrate specificity of one of the pyrrolysyl-tRNA synthetases, we developed a triply orthogonal system that enables simultaneous reassignment of UAU, UAG, and UAA to produce proteins containing three distinct ncAAs at precisely defined sites. To showcase the utility of this system, we produced proteins containing two or three ncAAs, with unique bioorthogonal functional groups, and demonstrate that these proteins can be separately modified with multiple fluorescent probes.Item Multiplexable fluorescence lifetime imaging (FLIM) probes for Abl and Src-family kinases(Royal Society of Chemistry, 2020) Jena, Sampreeti; Damayanti, Nur P.; Tan, Jackie; Pratt, Erica D.; Irudayaraj, Joseph M.K.; Parker, Laura L.; Neurological Surgery, School of MedicineMany commonly employed strategies to map kinase activities in live cells require expression of genetically encoded proteins (e.g. FRET sensors). In this work, we describe the development and preliminary application of a set of cell-penetrating, fluorophore labelled peptide substrates for fluorescence lifetime imaging (FLIM) of Abl and Src-family kinase activities. These probes do not rely on FRET pairs or genetically-encoded protein expression. We further demonstrate probe multiplexing and pixel-by-pixel quantification to estimate the relative proportion of modified probe, suggesting that this strategy will be useful for detailed mapping of single cell and subcellular dynamics of multiple kinases concurrently in live cells.Item PIE-FLIM Measurements of Two Different FRETBased Biosensor Activities in the Same Living Cells(Cell Press, 2020-04-21) Reissaus, Christopher A.; Day, Kathleen H.; Mirmira, Raghavendra G.; Dunn, Kenneth W.; Pavalko, Fredrick M.; Day, Richard N.; Pediatrics, School of MedicineWe report the use of pulsed interleaved excitation (PIE)-fluorescence lifetime imaging microscopy (FLIM) to measure the activities of two different biosensor probes simultaneously in single living cells. Many genetically encoded biosensors rely on the measurement of Förster resonance energy transfer (FRET) to detect changes in biosensor conformation that accompany the targeted cell signaling event. One of the most robust ways of quantifying FRET is to measure changes in the fluorescence lifetime of the donor fluorophore using FLIM. The study of complex signaling networks in living cells demands the ability to track more than one of these cellular events at the same time. Here, we demonstrate how PIE-FLIM can separate and quantify the signals from different FRET-based biosensors to simultaneously measure changes in the activity of two cell signaling pathways in the same living cells in tissues. The imaging system described here uses selectable laser wavelengths and synchronized detection gating that can be tailored and optimized for each FRET pair. Proof-of-principle studies showing simultaneous measurement of cytosolic calcium and protein kinase A activity are shown, but the PIE-FLIM approach is broadly applicable to other signaling pathways.