- Browse by Subject
Browsing by Subject "Estrogen receptor"
Now showing 1 - 10 of 17
Results Per Page
Sort Options
Item A triple hormone receptor ER, AR, and VDR signature is a robust prognosis predictor in breast cancer(Springer Nature, 2024-09-13) Omar, Mohamed; Harrell, J. Chuck; Tamimi, Rulla; Marchionni, Luigi; Erdogan, Cihat; Nakshatri, Harikrishna; Ince, Tan A.; Surgery, School of MedicineBackground: Despite evidence indicating the dominance of cell-of-origin signatures in molecular tumor patterns, translating these genome-wide patterns into actionable insights has been challenging. This study introduces breast cancer cell-of-origin signatures that offer significant prognostic value across all breast cancer subtypes and various clinical cohorts, compared to previously developed genomic signatures. Methods: We previously reported that triple hormone receptor (THR) co-expression patterns of androgen (AR), estrogen (ER), and vitamin D (VDR) receptors are maintained at the protein level in human breast cancers. Here, we developed corresponding mRNA signatures (THR-50 and THR-70) based on these patterns to categorize breast tumors by their THR expression levels. The THR mRNA signatures were evaluated across 56 breast cancer datasets (5040 patients) using Kaplan-Meier survival analysis, Cox proportional hazard regression, and unsupervised clustering. Results: The THR signatures effectively predict both overall and progression-free survival across all evaluated datasets, independent of subtype, grade, or treatment status, suggesting improvement over existing prognostic signatures. Furthermore, they delineate three distinct ER-positive breast cancer subtypes with significant survival in differences-expanding on the conventional two subtypes. Additionally, coupling THR-70 with an immune signature identifies a predominantly ER-negative breast cancer subgroup with a highly favorable prognosis, comparable to ER-positive cases, as well as an ER-negative subgroup with notably poor outcome, characterized by a 15-fold shorter survival. Conclusions: The THR cell-of-origin signature introduces a novel dimension to breast cancer biology, potentially serving as a robust foundation for integrating additional prognostic biomarkers. These signatures offer utility as a prognostic index for stratifying existing breast cancer subtypes and for de novo classification of breast cancer cases. Moreover, THR signatures may also hold promise in predicting hormone treatment responses targeting AR and/or VDR.Item The anti‐dipsogenic and anti‐natriorexigenic effects of estradiol, but not the anti‐pressor effect, are lost in aged female rats(Wiley, 2021-07) Santollo, Jessica; Collett, Jason A.; Edwards, Andrea A.; Anatomy and Cell Biology, School of MedicineEstradiol (E2) inhibits fluid intake in several species, which may help to defend fluid homeostasis by preventing excessive extracellular fluid volume. Although this phenomenon is well established using the rat model, it has only been studied directly in young adults. Because aging influences the neuronal sensitivity to E2 and the fluid intake effects of E2 are mediated in the brain, we tested the hypothesis that aging influences the fluid intake effects of E2 in female rats. To do so, we examined water and NaCl intake in addition to the pressor effect after central angiotensin II treatment in young (3-4 months), middle-aged (10-12 months), and old (16-18 months) ovariectomized rats treated with estradiol benzoate (EB). As expected, EB treatment reduced water and NaCl intake in young rats. EB treatment, however, did not reduce water intake in old rats, nor did it reduce NaCl intake in middle-aged or old rats. The ability of EB to reduce blood pressure was, in contrast, observed in all three age groups. Next, we also measured the gene expression of estrogen receptors (ERs) and the angiotensin type 1 receptor (AT1R) in the areas of the brain that control fluid balance. ERβ, G protein estrogen receptor (GPER), and AT1R were reduced in the paraventricular nucleus of the hypothalamus in middle-aged and old rats, compared to young rats. These results suggest the estrogenic control of fluid intake is modified by age. Older animals lost the fluid intake effects of E2, which correlated with decreased ER and AT1R expression in the hypothalamus.Item APC loss affects DNA damage repair causing doxorubicin resistance in breast cancer cells(Elsevier, 2019-12) Stefanski, Casey D.; Keffler, Kaitlyn; McClintock, Stephanie; Milac, Lauren; Prosperi, Jenifer R.; Biochemistry and Molecular Biology, School of MedicineChemoresistance is one of the leading causes of cancer-related deaths in the United States. Triple negative breast cancer (TNBC), a subtype lacking the known breast cancer receptors used for targeted therapy, is reliant on chemotherapy as the standard of care. The Adenomatous Polyposis Coli (APC) tumor suppressor is mutated or hypermethylated in 70% of sporadic breast cancers with APC-deficient tumors resembling the TNBC subtype. Using mammary tumor cells from the ApcMin/+ mouse model crossed to the Polyoma middle T antigen (PyMT) transgenic model, we previously showed that APC loss decreased sensitivity to doxorubicin (DOX). Understanding the molecular basis for chemoresistance is essential for the advancement of novel therapeutic approaches to ultimately improve patient outcomes. Resistance can be caused via different methods, but here we focus on the DNA repair response with DOX treatment. We show that MMTV-PyMT;ApcMin/+ cells have decreased DNA damage following 24 hour DOX treatment compared to MMTV-PyMT;Apc+/+ cells. This decreased damage is first observed 24 hours post-treatment and continues throughout 24 hours of drug recovery. Activation of DNA damage response pathways (ATM, Chk1, and Chk2) are decreased at 24 hours DOX-treatment in MMTV-PyMT;ApcMin/+ cells compared to control cells, but show activation at earlier time points. Using inhibitors that target DNA damage repair kinases (ATM, ATR, and DNA-PK), we showed that ATM and DNA-PK inhibition increased DOX-induced apoptosis in the MMTV-PyMT;ApcMin/+ cells. In the current work, we demonstrated that APC loss imparts resistance through decreased DNA damage response, which can be attenuated through DNA repair inhibition, suggesting the potential clinical use of DNA repair inhibitions as combination therapy.Item Argonaute 2 Expression Correlates with a Luminal B Breast Cancer Subtype and Induces Estrogen Receptor Alpha Isoform Variation(MDPI, 2016-09-21) Conger, Adrienne K.; Martin, Elizabeth C.; Yan, Thomas J.; Rhodes, Lyndsay V.; Hoang, Van T.; La, Jacqueline; Anbalagan, Muralidharan; Burks, Hope E.; Rowan, Brian G.; Nephew, Kenneth P.; Collins-Burow, Bridgette M.; Burow, Matthew E.; Cellular and Integrative Physiology, School of MedicineEstrogen receptor alpha (ERα) signaling pathways are frequently disrupted in breast cancer and contribute to disease progression. ERα signaling is multifaceted and many ERα regulators have been identified including transcription factors and growth factor pathways. More recently, microRNAs (miRNAs) are shown to deregulate ERα activity in breast carcinomas, with alterations in both ERα and miRNA expression correlating to cancer progression. In this study, we show that a high expression of Argonaute 2 (AGO2), a translation regulatory protein and mediator of miRNA function, correlates with the luminal B breast cancer subtype. We further demonstrate that a high expression of AGO2 in ERα+ tumors correlates with a poor clinical outcome. MCF-7 breast cancer cells overexpressing AGO2 (MCF7-AGO2) altered ERα downstream signaling and selective ERα variant expression. Enhanced ERα-36, a 36 kDa ERα isoform, protein and gene expression was observed in vitro. Through quantitative polymerase chain reaction (qPCR), we demonstrate decreased basal expression of the full-length ERα and progesterone receptor genes, in addition to loss of estrogen stimulated gene expression in vitro. Despite the loss, MCF-7-AGO2 cells demonstrated increased estrogen stimulated tumorigenesis in vivo. Together with our clinical findings on AGO2 expression and the luminal B subtype, we suggest that AGO2 is a regulator of altered ERα signaling in breast tumors.Item BreastDefend enhances effect of tamoxifen in estrogen receptor-positive human breast cancer in vitro and in vivo(BioMed Central, 2017-02-16) Cheng, Shujie; Castillo, Victor; Welty, Matt; Alvarado, Mark; Eliaz, Isaac; Temm, Constance J.; Sandusky, George E.; Sliva, Daniel; Department of Pathology and Laboratory Medicine, IU School of MedicineBACKGROUND: Tamoxifen (TAM) has been widely used for the treatment of estrogen receptor (ER)-positive breast cancer and its combination with other therapies is being actively investigated as a way to increase efficacy and decrease side effects. Here, we evaluate the therapeutic potential of co-treatment with TAM and BreastDefend (BD), a dietary supplement formula, in ER-positive human breast cancer. METHODS: Cell proliferation and apoptosis were determined in ER-positive human breast cancer cells MCF-7 by MTT assay, quantitation of cytoplasmic histone-associated DNA fragments and expression of cleaved PARP, respectively. The molecular mechanism was identified using RNA microarray analysis and western blotting. Tumor tissues from xenograft mouse model were analyzed by immunohistochemistry. RESULTS: Our data clearly demonstrate that a combination of 4-hydroxytamoxifen (4-OHT) with BD lead to profound inhibition of cell proliferation and induction of apoptosis in MCF-7 cells. This effect is consistent with the regulation of apoptotic and TAM resistant genes at the transcription and translation levels. Importantly, TAM and BD co-treatment significantly enhanced apoptosis, suppressed tumor growth and reduced tumor weight in a xenograft model of human ER-positive breast cancer. CONCLUSION: BD sensitized ER-positive human breast cancer cells to 4-OHT/TAM treatment in vitro and in vivo. BreastDefend can be used in an adjuvant therapy to increase the therapeutic effect of tamoxifen in patients with ER-positive breast cancer.Item Combating CHK1 resistance in triple negative breast cancer: EGFR inhibition as potential combinational therapy(OAE Publishing, 2022-03-08) Stefanski, Casey D.; Prosperi, Jenifer R.; Biochemistry and Molecular Biology, School of MedicineTriple negative breast cancer (TNBC) is marked by a lack of expression of the Estrogen Receptor, Progesterone Receptor, and human epidermal growth factor receptor 2. Therefore, targeted therapies are being investigated based on the expression profiles of tumors. Due to the potential for acquired and intrinsic resistance, there is a need for combination therapy to overcome resistance. In the article by Lee et al., the authors identify that, while prexasertib (a CHK1 inhibitor) lacks efficacy alone, combination with an EGFR inhibitor provides synergistic anti-tumor effects. Advances in targeted therapy for TNBC will benefit the clinical landscape for this disease, with this study initiating a new avenue of investigation.Item Dependence receptor UNC5A restricts luminal to basal breast cancer plasticity and metastasis(BMC, 2018-05-02) Padua, Maria B.; Bhat-Nakshatri, Poornima; Anjanappa, Manjushree; Prasad, Mayuri S.; Hao, Yangyang; Rao, Xi; Liu, Sheng; Wan, Jun; Liu, Yunlong; McElyea, Kyle; Jacobsen, Max; Sandusky, George; Althouse, Sandra; Perkins, Susan; Nakshatri, Harikrishna; Surgery, School of MedicineBACKGROUND: The majority of estrogen receptor-positive (ERα+) breast cancers respond to endocrine therapies. However, resistance to endocrine therapies is common in 30% of cases, which may be due to altered ERα signaling and/or enhanced plasticity of cancer cells leading to breast cancer subtype conversion. The mechanisms leading to enhanced plasticity of ERα-positive cancer cells are unknown. METHODS: We used short hairpin (sh)RNA and/or the CRISPR/Cas9 system to knockdown the expression of the dependence receptor UNC5A in ERα+ MCF7 and T-47D cell lines. RNA-seq, quantitative reverse transcription polymerase chain reaction, chromatin immunoprecipitation, and Western blotting were used to measure the effect of UNC5A knockdown on basal and estradiol (E2)-regulated gene expression. Mammosphere assay, flow cytometry, and immunofluorescence were used to determine the role of UNC5A in restricting plasticity. Xenograft models were used to measure the effect of UNC5A knockdown on tumor growth and metastasis. Tissue microarray and immunohistochemistry were utilized to determine the prognostic value of UNC5A in breast cancer. Log-rank test, one-way, and two-way analysis of variance (ANOVA) were used for statistical analyses. RESULTS: Knockdown of the E2-inducible UNC5A resulted in altered basal gene expression affecting plasma membrane integrity and ERα signaling, as evident from ligand-independent activity of ERα, altered turnover of phosphorylated ERα, unique E2-dependent expression of genes effecting histone demethylase activity, enhanced upregulation of E2-inducible genes such as BCL2, and E2-independent tumorigenesis accompanied by multiorgan metastases. UNC5A depletion led to the appearance of a luminal/basal hybrid phenotype supported by elevated expression of basal/stem cell-enriched ∆Np63, CD44, CD49f, epidermal growth factor receptor (EGFR), and the lymphatic vessel permeability factor NTN4, but lower expression of luminal/alveolar differentiation-associated ELF5 while maintaining functional ERα. In addition, UNC5A-depleted cells acquired bipotent luminal progenitor characteristics based on KRT14+/KRT19+ and CD49f+/EpCAM+ phenotype. Consistent with in vitro results, UNC5A expression negatively correlated with EGFR expression in breast tumors, and lower expression of UNC5A, particularly in ERα+/PR+/HER2- tumors, was associated with poor outcome. CONCLUSION: These studies reveal an unexpected role of the axon guidance receptor UNC5A in fine-tuning ERα and EGFR signaling and the luminal progenitor status of hormone-sensitive breast cancers. Furthermore, UNC5A knockdown cells provide an ideal model system to investigate metastasis of ERα+ breast cancers.Item Estradiol improves right ventricular function in rats with severe angioproliferative pulmonary hypertension: effects of endogenous and exogenous sex hormones(American Physiological Society, 2015-05) Frump, Andrea L.; Goss, Kara N.; Vayl, Alexandra; Albrecht, Marjorie; Fisher, Amanda; Tursunova, Roziya; Fierst, John; Whitson, Jordan; Cucci, Anthony R.; Brown, M. Beth; Lahm, Tim; Department of Physical Therapy, School of Health and Rehabilitation SciencesEstrogens are disease modifiers in PAH. Even though female patients exhibit better right ventricular (RV) function than men, estrogen effects on RV function (a major determinant of survival in PAH) are incompletely characterized. We sought to determine whether sex differences exist in RV function in the SuHx model of PAH, whether hormone depletion in females worsens RV function, and whether E2 repletion improves RV adaptation. Furthermore, we studied the contribution of ERs in mediating E2’s RV effects. SuHx-induced pulmonary hypertension (SuHx-PH) was induced in male and female Sprague-Dawley rats as well as OVX females with or without concomitant E2 repletion (75 μg·kg−1·day−1). Female SuHx rats exhibited superior CI than SuHx males. OVX worsened SuHx-induced decreases in CI and SuHx-induced increases in RVH and inflammation (MCP-1 and IL-6). E2 repletion in OVX rats attenuated SuHx-induced increases in RV systolic pressure (RVSP), RVH, and pulmonary artery remodeling and improved CI and exercise capacity (V̇o2max). Furthermore, E2 repletion ameliorated SuHx-induced alterations in RV glutathione activation, proapoptotic signaling, cytoplasmic glycolysis, and proinflammatory cytokine expression. Expression of ERα in RV was decreased in SuHx-OVX but was restored upon E2 repletion. RV ERα expression was inversely correlated with RVSP and RVH and positively correlated with CO and apelin RNA levels. RV-protective E2 effects observed in females were recapitulated in male SuHx rats treated with E2 or with pharmacological ERα or ERβ agonists. Our data suggest significant RV-protective ER-mediated effects of E2 in a model of severe PH.Item Estrogen receptor involvement in the response of human keratinocytes to ultraviolet B irradiation(2014) Farrington, Daphne L.; Spandau, Dan F.; Harrington, Maureen A.; Nakshatri, HarikrishnaThe signaling mechanisms involved in UVB-induced skin cancer are complex and although the scope of this work is inherently limited in focus, the findings may provide insight into how estrogen receptor signaling impacts cell growth, senescence, and apoptosis to protect keratinocytes. Additional signaling due to E2-activation of the estrogen receptor may provide back-up or redundant pathways in response to UVB.Item microRNA regulation of mammalian target of rapamycin expression and activity controls estrogen receptor function and RAD001 sensitivity(BioMed Central, 2014-10-06) Martin, Elizabeth C.; Rhodes, Lyndsay V.; Elliott, Steven; Krebs, Adrienne E.; Nephew, Kenneth P.; Flemington, Erik K.; Collins-Burow, Bridgette M.; Burow, Matthew E.; Department of Cellular & Integrative Physiology, School of MedicineBackground: The AKT/mammalian target of rapamycin (mTOR) signaling pathway is regulated by 17 α -estradiol (E2) signaling and mediates E2-induced proliferation and progesterone receptor (PgR) expression in breast cancer. Methods and results: Here we use deep sequencing analysis of previously published data from The Cancer Genome Atlas to demonstrate that expression of a key component of mTOR signaling, rapamycin-insensitive companion of mTOR (Rictor), positively correlated with an estrogen receptor- α positive (ER α + ) breast tumor signature. Through increased microRNA-155 (miR-155) expression in the ER α + breast cancer cells we demonstrate repression of Rictor enhanced activation of mTOR complex 1 (mTORC1) signaling with both qPCR and western blot. miR-155-mediated mTOR signaling resulted in deregulated ER α signalingbothinculturedcells in vitro and in xenografts in vivo in addition to repressed PgR expression and act ivity.FurthermoreweobservedthatmiR-155 enhanced mTORC1 signaling (observed through western blot for increased phosphorylation on mTOR S2448) and induced inhibition of mTORC2 signaling (evident through repressed Rictor and tuberous sclerosis 1 (TSC1) gene expression). mTORC1 induced deregulation of E2 signaling was confirmed using qPCR and the mTORC1-specific inhibitor RAD001. Co-treatment of MCF7 breast cancer cells stably overexpressing miR-155 with RAD001 and E2 restored E2-induced PgR gene expression. RAD001 treatment of SCID/CB17 mice inhibited E2-induced tumorigenesis of the MCF7 miR-155 overexpressing cell line. Finally we demonstrated a strong positive correlation between Rictor and PgR expression and a negative correlation with Raptor expression in Luminal B breast cancer samples, a breast cancer histological subtype known for having an altered ER α -signaling pathway. Conclusions: miRNA mediated alterations in mTOR and ER α signaling establishes a new mechanism for altered estrogen responses independent of growth factor stimulation.