ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Erosion"

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Foredune and Beach Dynamics on the Southern Shores of Lake Michigan during Recent High Water Levels
    (MDPI, 2022) Kilibarda, Zoran; Kilibarda, Vesna; Mathematical Sciences, School of Science
    From 18 January 2013 (175.16 m a.s.l.) to 8 September 2020 (177.82 m a.s.l.), Lake Michigan experienced its fastest and highest rise (2.67 m) since 1860, when instrumental measurements began. Extensive foredunes developed since the last high lake levels began eroding in 1997 at fast rates. This study focuses on coastal morphodynamics along the 800 m coast within the central Indiana Dunes State Park on Lake Michigan’s southern shores during this time. Severe foredune erosion, in terms of total horizontal dune loss and total volume of eroded sand, occurred unevenly over the three-year period, both temporally, during a single storm, a season, a year, or three years, and spatially, in the eastern, central, and western study areas. Late autumn storms accounted for most foredune erosion in 2018 and 2019, when foredune scarps retreated up to 4 and 9 m, respectively. Erosion was highest in the updrift eastern study area, where about 8 m3/m of sand was removed in 2018 and about 19 m3/m of sand was removed in 2019. The lack of shelf ice along the shore, rising lake levels, and convective storms that triggered meteotsunamis changed the foredune erosion pattern in 2020. Erosion became most vigorous in the downdrift central (13 m scarp retreat) and western (11 m scarp retreat) study areas. The average volume of eroded sand (21.5 m3/m) was more than double that of 2019 (8 m3/m), and almost quadruple the 2018 volume (5.5 m3/m). After foredune erosion events, the beach rapidly recovered and maintained its width as the shoreline migrated landward. On many occasions following these severe erosion events the dry portion of the beach aggraded and absorbed significant sand amounts removed from the foredunes. The remaining sand was transferred to the surf zone, where it changed the sand bar morphology and led to their coalescence and flattening.
  • Loading...
    Thumbnail Image
    Item
    The Impact of Mouthrinses on the Efficacy of Fluoride Dentifrices in Preventing Enamel and Dentin Erosion/ Abrasion
    (2018) Albeshir, Ebtehal; Lippert, Frank; Cook, Norman B.; Hara, Anderson
    Objective: Toothbrushing with fluoride toothpaste followed by rinsing with mouthwash is a routine procedure to maintain good oral hygiene. It is unknown to what extent these rinses can modulate the effect of fluoride in its ability to prevent erosion/abrasion.The aim of this in-vitro study was to investigate and compare the impact of chlorhexidine (CHX), essential oils (EO) and cetylpyridinium chloride (CPC) mouthrinses on erosive tooth wear protection afforded by conventional fluoride toothpastes. Materials and Methods: The following experimental factors were considered: five rinses: CHX, EO, CPC, a fluoride rinse, and deionized water, two fluoride toothpastes: stannous fluoride (SnF2) or sodium fluoride (NaF) and two models: (erosion/ erosion+abrasion). Slabs of bovine enamel and dentin were prepared and embedded in resin blocks and generated 10 enamel and dentin testing groups (n = 8). UPVC tapes were placed on the sides of each slab leaving 1mm area exposed in the center. The blocks were subjected to a five-day cycling model. Then, the blocks were placed in a brushing machine and exposed to fluoride toothpaste slurry (one side was brushed and the other wasn’t). The blocks were then exposed to rinse treatments. Artificial saliva was used to remineralize the specimens after erosions and treatment challenges, and as storage media. After the fifth day of cycling, surface loss (in micrometers) was determined by profilometer. Data were analyzed using ANOVA (α = 0.05). Results: There was no interaction among the three factors (type of toothpaste, mouthrinse and abrasion or not (dentin p = 0.0520, enamel p = 0.4720). There were no significant two-way interactions as SL was only affected by toothpaste and mouthrinse. NaF caused less SL than SnF2 (4.60 vs. 5.83 μm; p < 0.0001) in dentin, whereas the opposite was found in enamel (5.20 vs. 3.56 μm; p < 0.0001). Toothbrushing abrasion caused comparatively more SL in enamel (6.53 vs. 2.23 μm; p < 0.0001) than in dentin (6.06 vs. 4.38 μm; p < 0.0001). None of the tested mouthrinses affected SL. Conclusion: Commonly used mouthrinses containing antimicrobial agents or additional fluoride, do not impair the erosion/abrasion protection afforded by fluoride toothpastes. Tested SnF2 dentifrice offered greater protection against enamel surface loss and NaF dentifrices showed more protection for the dentin surface. Clinical relevance: The understanding of the interaction between commonly used rinses and fluoride dentifrices will help dentists provide better recommendations to patients with erosive lesions.
  • Loading...
    Thumbnail Image
    Item
    In situ efficacy of an experimental toothpaste on enamel rehardening and prevention of demineralisation: a randomised, controlled trial
    (BMC, 2020) Creeth, Jonathan E.; Burnett, Gary R.; Souverain, Audrey; Gomez-Pereira, Paola; Zero, Domenick T.; Lippert, Frank; Hara, Anderson T.; Cariology, Operative Dentistry and Dental Public Health, School of Dentistry
    Background A novel sodium fluoride toothpaste containing lactate ion and polyvinylmethylether-maleic anhydride has been developed to promote enamel remineralisation and resistance to demineralisation. In this in situ study, we compared this toothpaste (‘Test’) with a stannous fluoride-zinc citrate (SnF2-Zn) toothpaste (‘Reference’) (both 1100–1150 ppm fluoride) and a fluoride-free toothpaste (‘Placebo’) using an enamel dental erosion-rehardening model. Methods In each phase of this randomised, investigator-blind, crossover study, participants wore palatal appliances holding bovine enamel specimens with erosive lesions. They brushed their natural teeth with either the Test, Reference or Placebo toothpastes, then swished the resultant slurry. Specimens were removed at 2 h and 4 h post-brushing and exposed to an in vitro acid challenge. Surface microhardness was measured at each stage; enamel fluoride uptake was measured after in situ rehardening. Surface microhardness recovery, relative erosion resistance, enamel fluoride uptake and acid resistance ratio were calculated at both timepoints. Results Sixty two randomised participants completed the study. Test toothpaste treatment yielded significantly greater surface microhardness recovery, relative erosion resistance and enamel fluoride uptake values than either Reference or Placebo toothpastes after 2 and 4 h. The acid resistance ratio value for Test toothpaste was significantly greater than either of the other treatments after 2 h; after 4 h, it was significantly greater versus Placebo only. No treatment-related adverse events were reported. Conclusions In this in situ model, the novel-formulation sodium fluoride toothpaste enhanced enamel rehardening and overall protection against demineralisation compared with a fluoride-free toothpaste and a marketed SnF2-Zn toothpaste.
  • Loading...
    Thumbnail Image
    Item
    Interaction between tin/flouride-containing solutions and artificially created dental pellicles on erosion prevetion in vitro
    (2013) Algarni, Amnah Abdullah A.; Hara, Anderson; Lippert, Frank; Gregory, Richard L.; Zandoná, Andréa F. Gerreira (Andréa Gonçalves Ferreira), 1969-; Cook, Norman Blaine, 1954-
    BACKGROUND: Fluoride and stannous ions have been reported to be relevant for dental erosion prevention. However, their interaction with the acquired dental pellicle (ADP), a clinically relevant erosion protective factor, is not well known and needs to be investigated. OBJECTIVES: To investigate the anti-erosive properties of fluoride-containing solutions and stannous solutions on enamel and dentin surfaces with a previously formed ADP. To characterize the protein profile of the ADP treated with the test solutions. METHODS: Phase I tested four solutions: SnCl2/NaF, NaF, SnCl2 and deionized water (DIW) (as negative control). Forty bovine enamel and dentin specimens 104 (4x4x2 mm3) were prepared and randomly distributed into 4 groups (n = 10). The specimens were incubated in clarified human saliva (CHS) for 24 h for pellicle formation and then they were subjected to a cycling procedure that included a 5-min erosive challenge (0.3-percent citric acid, pH 2.6); a 2-min treatment with the solution (between 1st, 3rd and 6th cycles); a 2-h immersion in CHS, and overnight immersion in CHS. Cycles were repeated 6x/day for 5 days. The outcome measure was surface loss (SL) using profilometry. Phase II: Thirty-two (32) bovine enamel specimens (882 mm3) (n = 8) were similarly prepared and incubated in saliva for 24 h and then treated with the solutions for 2 min followed by CHS immersion for 2 h. This cycle was repeated 3x for one day. The pellicles formed and treated with the test rinse solutions were collected, digested, and analyzed for specific protein content using liquid chromatography electrospray ionization tandem mass spectrometry (LCESI-MS/MS). RESULTS: Phase I: for enamel, SnCl2/NaF, SnCl2, NaF solutions provided 89 percent, 67 percent, and 42 percent SL reduction respectively compared with the control, while in dentin they provided 60 percent, 23 percent, and 36 percent, respectively, all significant at p < 0.05. Phase II: Seventy-two (72) common proteins were identified in all groups, 30 exclusive to DIW, 20 to SnCl2/NaF, 19 to NaF, and 13 to SnCl2. SnCl2/NaF increased the abundance of pellicle proteins than each one alone. CONCLUSION: SnCl2/NaF showed the best anti-erosive effect on both enamel and dentin. The findings suggest that the composition of acquired pellicle changes with different solutions, which may be related to their anti-erosive effect.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University