Interaction between tin/flouride-containing solutions and artificially created dental pellicles on erosion prevetion in vitro
Date
Authors
Language
Embargo Lift Date
Department
Committee Chair
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract
BACKGROUND: Fluoride and stannous ions have been reported to be relevant for dental erosion prevention. However, their interaction with the acquired dental pellicle (ADP), a clinically relevant erosion protective factor, is not well known and needs to be investigated. OBJECTIVES: To investigate the anti-erosive properties of fluoride-containing solutions and stannous solutions on enamel and dentin surfaces with a previously formed ADP. To characterize the protein profile of the ADP treated with the test solutions. METHODS: Phase I tested four solutions: SnCl2/NaF, NaF, SnCl2 and deionized water (DIW) (as negative control). Forty bovine enamel and dentin specimens 104 (4x4x2 mm3) were prepared and randomly distributed into 4 groups (n = 10). The specimens were incubated in clarified human saliva (CHS) for 24 h for pellicle formation and then they were subjected to a cycling procedure that included a 5-min erosive challenge (0.3-percent citric acid, pH 2.6); a 2-min treatment with the solution (between 1st, 3rd and 6th cycles); a 2-h immersion in CHS, and overnight immersion in CHS. Cycles were repeated 6x/day for 5 days. The outcome measure was surface loss (SL) using profilometry. Phase II: Thirty-two (32) bovine enamel specimens (882 mm3) (n = 8) were similarly prepared and incubated in saliva for 24 h and then treated with the solutions for 2 min followed by CHS immersion for 2 h. This cycle was repeated 3x for one day. The pellicles formed and treated with the test rinse solutions were collected, digested, and analyzed for specific protein content using liquid chromatography electrospray ionization tandem mass spectrometry (LCESI-MS/MS). RESULTS: Phase I: for enamel, SnCl2/NaF, SnCl2, NaF solutions provided 89 percent, 67 percent, and 42 percent SL reduction respectively compared with the control, while in dentin they provided 60 percent, 23 percent, and 36 percent, respectively, all significant at p < 0.05. Phase II: Seventy-two (72) common proteins were identified in all groups, 30 exclusive to DIW, 20 to SnCl2/NaF, 19 to NaF, and 13 to SnCl2. SnCl2/NaF increased the abundance of pellicle proteins than each one alone. CONCLUSION: SnCl2/NaF showed the best anti-erosive effect on both enamel and dentin. The findings suggest that the composition of acquired pellicle changes with different solutions, which may be related to their anti-erosive effect.